THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
8th Edition
ISBN: 9781307434316
Author: CENGEL
Publisher: INTER MCG
Question
Book Icon
Chapter 9.12, Problem 85P

(a)

To determine

The air temperature at the turbine exit.

(b)

To determine

The net work output of the simple Brayton cycle.

(c)

To determine

The thermal efficiency of the cycle.

Blurred answer
Students have asked these similar questions
Refrigerant-134a is expanded isentropically from 600 kPa and 70°C at the inlet of a steady-flow turbine to 100 kPa at the outlet. The outlet area is 1 m2, and the inlet area is 0.5 m2. Calculate the inlet and outlet velocities when the mass flow rate is 0.65 kg/s. Use the tables for R-134a.   The inlet velocity is  m/s.   The outlet velocity is  m/s.
A container filled with 70 kg of liquid water at 95°C is placed in a 90-m3 room that is initially at 12°C. Thermal equilibrium is established after a while as a result of heat transfer between the water and the air in the room. Assume the room is at the sea level, well sealed, and heavily insulated. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.         Determine the final equilibrium temperature. Use the table containing the ideal gas specific heats of various common gases.   The final equilibrium temperature is  °C.
Steam at 100 psia and 650°F is expanded adiabatically in a closed system to 10 psia. Determine the work produced, in Btu/lbm, and the final temperature of steam for an isentropic expansion efficiency of 80 percent. Use steam tables.   The work produced is   Btu/lbm.   The final temperature of steam is  °F.

Chapter 9 Solutions

THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I

Ch. 9.12 - Prob. 11PCh. 9.12 - Prob. 12PCh. 9.12 - Prob. 13PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Prob. 21PCh. 9.12 - Prob. 22PCh. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Prob. 27PCh. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Prob. 32PCh. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 35PCh. 9.12 - Prob. 36PCh. 9.12 - Prob. 37PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Prob. 40PCh. 9.12 - Prob. 41PCh. 9.12 - Prob. 42PCh. 9.12 - Prob. 43PCh. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 57PCh. 9.12 - Prob. 58PCh. 9.12 - Prob. 59PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 63PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 71PCh. 9.12 - Prob. 72PCh. 9.12 - Prob. 73PCh. 9.12 - Prob. 74PCh. 9.12 - Prob. 75PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 82PCh. 9.12 - Prob. 83PCh. 9.12 - Prob. 85PCh. 9.12 - 9–86 Consider a simple Brayton cycle using air as...Ch. 9.12 - 9–87 Air is used as the working fluid in a simple...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - 9–91E A gas-turbine power plant operates on a...Ch. 9.12 - Prob. 92PCh. 9.12 - 9–93 A gas-turbine power plant operates on the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - Prob. 95PCh. 9.12 - Prob. 96PCh. 9.12 - Prob. 97PCh. 9.12 - Prob. 98PCh. 9.12 - 9–99 A gas turbine for an automobile is designed...Ch. 9.12 - Prob. 100PCh. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - Prob. 106PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 108PCh. 9.12 - Prob. 109PCh. 9.12 - Prob. 110PCh. 9.12 - Prob. 111PCh. 9.12 - Prob. 112PCh. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Prob. 118PCh. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - Prob. 123PCh. 9.12 - Prob. 124PCh. 9.12 - Prob. 126PCh. 9.12 - Prob. 127PCh. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - Prob. 131PCh. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 134PCh. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - 9–137 Air at 7°C enters a turbojet engine at a...Ch. 9.12 - Prob. 138PCh. 9.12 - Prob. 139PCh. 9.12 - 9–140E Determine the exergy destruction associated...Ch. 9.12 - Prob. 141PCh. 9.12 - Prob. 142PCh. 9.12 - Prob. 143PCh. 9.12 - Prob. 144PCh. 9.12 - Prob. 146PCh. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 149PCh. 9.12 - Prob. 150RPCh. 9.12 - Prob. 151RPCh. 9.12 - Prob. 152RPCh. 9.12 - Prob. 153RPCh. 9.12 - Prob. 154RPCh. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 161RPCh. 9.12 - Prob. 162RPCh. 9.12 - Prob. 163RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 165RPCh. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 169RPCh. 9.12 - Prob. 170RPCh. 9.12 - Prob. 173RPCh. 9.12 - Prob. 174RPCh. 9.12 - Prob. 184FEPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - Prob. 186FEPCh. 9.12 - Prob. 187FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 189FEPCh. 9.12 - Prob. 190FEPCh. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...Ch. 9.12 - Prob. 198FEP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY