Helium is used as the working fluid in a Brayton cycle with regeneration. The pressure ratio of the cycle is 8, the compressor inlet temperature is 300 K, and the turbine inlet temperature is 1800 K. The effectiveness of the regenerator is 75 percent. Determine the thermal efficiency and the required mass flow rate of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of (a) 100 percent and (b) 80 percent.
a)
The thermal efficiency and the required mass flow rate of helium for a net power
output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of 100 percent.
Answer to Problem 173RP
The thermal efficiency of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
The required mass flow rate of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
Explanation of Solution
Draw the
Consider, the pressure is
Consider
Write the expression to calculate the temperature and pressure relation ratio for the isentropic compression process 1-2s.
Here, the specific heat ratio is k.
Write the expression to calculate the temperature and pressure relation ratio for the isentropic expansion process 3-4s.
Write the expression for the effectiveness of the regenerator
Write the expression to calculate the net work output for the regenerative Brayton cycle
Here, the specific heat of helium at constant pressure is
Write the expression to calculate the heat input for the regenerative Brayton cycle
Write the expression to calculate the thermal efficiency of the given regenerative Brayton cycle
Write the expression to calculate the mass flow rate of helium flowing through the given regenerative Brayton cycle
Here, the net power output produced by the given regenerative Brayton cycleis
Conclusion:
From Table A-2, “Ideal-gas specific heats of various common gases”, obtain the following values for helium gas.
Substitute 300 K for
Substitute 1800 K for
Substitute 0.75 for
Substitute
Substitute
Equation (V).
Substitute
Thus, the thermal efficiency of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
Substitute
Thus, the required mass flow rate of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
b)
The thermal efficiency and the required mass flow rate of helium for a net power
output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of 80 percent.
Answer to Problem 173RP
The required mass flow rate of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
The thermal efficiency of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
Explanation of Solution
Consider
Write the expression to calculate the temperature and pressure relation for the isentropic compression process 1-2.
Write the expression to calculate the isentropic efficiency of the compressor
Write the expression to calculate the temperature and pressure relation for the isentropic expansion process 3-4.
Write the expression for the isentropic efficiency of the turbine
Write the expression for the effectiveness of the regenerator
Write the expression to calculate the net work output for the regenerative Brayton cycle
Here, the specific heat of helium at constant pressure is
Write the expression to calculate the heat input for the regenerative Brayton cycle
Write the expression to calculate the thermal efficiency of the given regenerative Brayton cycle
Write the expression to calculate the mass flow rate of helium flowing through the given regenerative Brayton cycle
Here, the net power output produced by the given regenerative Brayton cycle is
Conclusion:
Substitute 300 K for
Substitute 300 K for
Substitute 1800 K for
Substitute 1800 K for
Substitute 0.75 for
Substitute
Substitute
Substitute
Thus, the required mass flow rate of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
Substitute
Thus, the thermal efficiency of helium for a net power output of 60 MW, assuming both the compressor and the turbine have an isentropic efficiency of
Want to see more full solutions like this?
Chapter 9 Solutions
Thermodynamics: An Engineering Approach
- Note: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question: (In the image as provided)arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question: The rectangular gate shown below is 3 m wide. Compute the force P needed to hold the gate in the position shown.arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question1: If the following container is 0.6m high, 1.2m wide and half full with water, determine the pressure acting at points A, B, and C if ax=2.6ms^-2.arrow_forward
- Please read the imagearrow_forwardChapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forwardConsider a large 6-cm-thick stainless steel plate (k = 15.1 W/m-K) in which heat is generated uniformly at a rate of 5 × 105 W/m³. Both sides of the plate are exposed to an environment at 30°C with a heat transfer coefficient of 60 W/m²K. Determine the value of the highest and lowest temperature. The highest temperature is The lowest temperature is °C. °C.arrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel engine please, please explain into detail the difference bewteen the two and referance the a diagram. Please include a sketch or an image of each diagramarrow_forwardDraw left view of the first orthographic projectionarrow_forwardSketch and Describe a timing diagram for a 2 stroke diesel engine emphasis on the 2 stroke as my last answer explained 4 stroke please include a diagram or sketch.arrow_forwardA 4 ft 200 Ib 1000 Ib.ft C 2 ft 350 Ib - за в 2.5 ft 150 Ib 250 Ib 375 300 Ib Replace the force system acting on the frame. shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forwardA continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ). ive submitted this question twice and have gotten two way different answers. looking for some help thanksarrow_forward15 kg of steel ball bearings at 100 ° C is immersed in 25 kg of water at 20 ° C . Assuming no loss of heat to or from the container, calculate the final temperature of the water after equilibrium has been attained.Specific heat of steel: 0.4857 kJ / kg / ° KSpecific heat of water: 4.187 kJ / kg / ° Karrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY