Concept explainers
(a)
The maximum temperature in the cycle.
(a)
Answer to Problem 153P
The maximum temperature in the cycle is
Explanation of Solution
Draw the
Refer to Table A-2b, obtain the properties of air at 1000 K.
Express the compression ratio.
Here, clearance volume is
Express the total volume of the engine at the beginning of compression process (state 1).
Process 1-2: Isentropic compression
Calculate the temperature at state 2.
Here, temperature at state 1 is
Calculate the pressure at state 2.
Here, pressure at state 1 is
Process 2-x and x-3: Constant-volume and constant pressure heat addition processes
Calculate the temperature at x state.
Here, pressure at x state is
Calculate the heat addition to the process 2-x.
Here, constant volume specific heat is
Calculate the heat addition to the process x-3.
Here, constant pressure specific heat is
Conclusion:
Substitute 16 for r and 1.8 L for
The value of
Substitute
Substitute 343 K for
Substitute 95 kPa for
Substitute 3859 kPa for
Substitute
Substitute
Thus, the maximum temperature in the cycle is
(b)
The net work output.
The thermal efficiency.
(b)
Answer to Problem 153P
The net work output is
The thermal efficiency is
Explanation of Solution
Express the total heat addition to the process.
Calculate the volume at state 3.
Here, volume at state x is
Process 3-4: Isentropic expansion
Calculate the temperature at state 4.
Here, volume at state 3 and 4 are
Calculate the pressure at state 4.
Here, pressure at state 3 and 4 are
Process 4-1: Constant volume heat rejection
Calculate the heat rejection.
Calculate the net work output.
Calculate the thermal efficiency.
Conclusion:
Substitute 702.6 kJ/kg for
Substitute
Substitute 2308 K for
Substitute 7500 kPa for
Substitute
Substitute 569.3 kJ/kg for
Thus, the net work output is
Substitute 835.8 kJ/kg for
Thus, the thermal efficiency is
(c)
The mean effective pressure.
(c)
Answer to Problem 153P
The mean effective pressure is
Explanation of Solution
Calculate the mass.
Calculate the mean effective pressure.
Conclusion:
Substitute 95 kPa for
Substitute 0.001853 kg for m,
Thus, the mean effective pressure is
(d)
The power for engine speed of 3500 rpm.
(d)
Answer to Problem 153P
The power for engine speed of 3500 rpm is
Explanation of Solution
Calculate the power for engine speed of 3500 rpm.
Here, engine speed is
Conclusion:
Substitute 2200 rev/min for
Thus, the power for engine speed of 3500 rpm is
(e)
The second law efficiency of the cycle.
The rate of exergy output with the exhaust gases.
(e)
Answer to Problem 153P
The second law efficiency of the cycle is
The rate of exergy output with the exhaust gases is
Explanation of Solution
Express the maximum thermal efficiency of the cycle.
Here, dead state temperature is
Express the second law efficiency of the cycle.
Calculate the rate of exergy of the exhaust gases.
Here, specific internal energy at state 4, dead state is
Conclusion:
Substitute
Substitute 0.8709 for
Thus, the second law efficiency of the cycle is
Substitute
Thus, the rate of exergy output with the exhaust gases is
Want to see more full solutions like this?
Chapter 9 Solutions
Thermodynamics: An Engineering Approach
- 20. [Ans. 9; 71.8 mm] A semi-elliptical laminated spring is made of 50 mm wide and 3 mm thick plates. The length between the supports is 650 mm and the width of the band is 60 mm. The spring has two full length leaves and five graduated leaves. If the spring carries a central load of 1600 N, find: 1. Maximum stress in full length and graduated leaves for an initial condition of no stress in the leaves. 2. The maximum stress if the initial stress is provided to cause equal stress when loaded. [Ans. 590 MPa ; 390 MPa ; 450 MPa ; 54 mm] 3. The deflection in parts (1) and (2).arrow_forwardQ6/ A helical square section spring is set inside another, the outer spring having a free length of 35 mm greater than the inner spring. The dimensions of each spring are as follows: Mean diameter (mm) Side of square section (mm) Active turns Outer Inner Spring Spring 120 70 8 7 20 15 Determine the (1) Maximum deflection of the two springs and (2) Equivalent spring rate of the two springs after sufficient load has been applied to deflect the outer spring 60 mm. Use G = 83 GN/m².arrow_forwardQ2/ The bumper springs of a railway carriage are to be made of rectangular section wire. The ratio of the longer side of the wire to its shorter side is 1.5, and the ratio of mean diameter of spring to the longer side of wire is nearly equal to 6. Three such springs are required to bring to rest a carriage weighing 25 kN moving with a velocity of 75 m/min with a maximum deflection of 200 mm. Determine the sides of the rectangular section of the wire and the mean diameter of coils when the shorter side is parallel to the axis of the spring. The allowable shear stress is not to exceed 300 MPa and G = 84 kN/mm². Q6/ A belicalarrow_forward
- 11. A load of 2 kN is dropped axially on a close coiled helical spring, from a height of 250 mm. The spring has 20 effective turns, and it is made of 25 mm diameter wire. The spring index is 8. Find the maximum shear stress induced in the spring and the amount of compression produced. The modulus of rigidity for the material of the spring wire is 84 kN/mm². [Ans. 287 MPa; 290 mm]arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- S B Pin 6 mm Garrow_forwardMid-Term Exam 2024/2025 Post graduate/Applied Mechanics- Metallurgy Q1/ State the type of fault in the following case, and state the structure in which it will appear. АВСАВСВАСВАСАВСАВСarrow_forwardالثانية Babakt Momentum equation for Boundary Layer S SS -Txfriction dray Momentum equation for Boundary Layer What laws are important for resolving issues 2 How to draw. 3 What's Point about this.arrow_forward
- R αι g The system given on the left, consists of three pulleys and the depicted vertical ropes. Given: ri J₁, m1 R = 2r; απ r2, J2, m₂ m1; m2; M3 J1 J2 J3 J3, m3 a) Determine the radii 2 and 3.arrow_forwardB: Solid rotating shaft used in the boat with high speed shown in Figure. The amount of power transmitted at the greatest torque is 224 kW with 130 r.p.m. Used DE-Goodman theory to determine the shaft diameter. Take the shaft material is annealed AISI 1030, the endurance limit of 18.86 kpsi and a factor of safety 1. Which criterion is more conservative? Note: all dimensions in mm. 1 AA Motor 300 Thrust Bearing Sprocket 100 9750 เอarrow_forwardQ2: The plate material of a pressure vessel is AISI 1050 QT 205 °C. The plate is rolled to a diameter of 1.2 m. The two sides of the plate are connected via a riveted joint as shown below. If the rivet material is G10500 with HB=197 and all rivet sizes M31. Find the required rivet size when the pressure vessel is subjected to an internal pressure of 500 MPa. Take safety factor = 2. 1.2m A B' A Chope olm 10.5 0.23 hopearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY