The specific impulse of the jet engine.
Answer to Problem 170RP
The specific impulse of the jet engine is
Explanation of Solution
Draw the
Consider that the aircraft is stationary, and the velocity of air moving towards the aircraft is
Diffuser :
Write the expression for the energy balance equation for the diffuser.
Here, the rate of energy entering the system is
Write the temperature and pressure relation for the process 1-2.
Here, the specific heat ratio of air is k, pressure at state 1 is
Compressor:
Write the pressure relation using the pressure ratio for the process 2-3.
Here, the pressure ratio is
Write the temperature and pressure relation for the process 2-3.
Here, temperate at state 3 is
Turbine:
Write the temperature relation for the compressor and turbine.
Here, the specific heat at constant pressure is
, temperature at state 4 is
Nozzle:
Write the temperature and pressure relation for the isentropic process 4-6.
Here, pressure at state 6 is
Write the energy balance equation for the nozzle.
Write the expression to calculate the specific impulse of the jet engine.
Here, the thrust force produced by engine is
Conclusion.
From Table A-1E, “Molar mass, gas constant, and critical-point properties”, obtain the
value of gas constant
From Table A-2Ea, “Ideal-gas specific heats of various common gases”, obtain the following values for air at room temperature.
The rate of change in the energy of the system
Substitute
Here, inlet velocity is
Substitute 0 for
Substitute 10psia for
Substitute 9 for
Substitute 609.8 R for
Substitute
Substitute
The rate of change in the energy of the system
Substitute
Here, velocity at stat 5 is
Since,
Substitute
Substitute
Thus, the specific impulse of the jet engine is
Want to see more full solutions like this?
Chapter 9 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- The initial pressure and temperature of air in an Otto cycle engine during compression are 90 kPa and 12°C. Determine the maximum pressure occurring in the cycle if the initial and final temperature during heat addition process are 350°C and 1250°C, and the compression ratio is 6. Please complete the answer for good feedback.?arrow_forwardQ3//A// In a gas turbine plant compression is carried out in one stage and expansion in one stage turbine. If the maximum temperature (T3K) and minimum temperature (T,K) in the cycle remain constant, show that for maximum work of the plant, the pressure ratio is given by:arrow_forwardA 10-stage compressor delivers 26 kg/s of air. The inlet pressure and temperature are 100 kPaa and 77°F, respectively. The discharge pressure is 13.80 bar. Intercooler is installed after each stage. Determine the 6th intercooler pressure in kPa.arrow_forward
- A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor, delivering a net power of 1 MW to the propeller. Air enters the diffuser at 8000 m altitude (Ta = 236K, pa = 36 kPa) with a velocity of 550 km/h, and decelerates essentially to zero velocity. The compressor pressure ratio is 5.3 and the compressor has an isentropic efficiency of 83%. The turbine inlet temperature is 1360 K, and its isentropic efficiency is 86%. The turbine exit pressure is 10 kPa higher than the ambient pressure at that altitude. Flow through the diffuser and nozzle is isentropic. Neglect kinetic energy except at the diffuser inlet and the nozzle exit. Using an air-standard analysis, determine: a) The mass and volumetric flow rates entering the diffuser, in kg/s and m3/s, respectively.b) The rate of heat addition to the combustor, in MW.c) The velocity at the nozzle exit, in m/s.arrow_forwardFor a turbocharged engine with a compressor efficiency of 59% what is the compressor outlet temperature (in degrees C) when running 30 psi of boost on a standard temperature and pressure day? What is the temperature gain produced in the intake air by the turbocharger?arrow_forwardAir at 7°C enters a turbojet engine at a rate of 16 kg/s and at a velocity of 220 m/s (relative to the engine). Air is heated in the combustion chamber at a rate 15,000 kJ/s, and it leaves the engine at 427°C. Determine the thrust produced by this turbojet engine. (Hint: Choose the entire engine as your control volume.)arrow_forward
- A turbine designed for an output of 100 MW receives superheated steam with the following conditions; h = 3550 kJ/kg, v1 = 40 m/s, h2 = 1356 kJ/kg, v2= 125 m/s. Assume no heat loss, determine the desired mass flow rate of the steam (kg/s).arrow_forwardQuestion attachedarrow_forwardAn air-standard Diesel cycle has a maximum temperature of 1800 K. At the beginning of compression, p1 = 95 kPa and Tq = 300 K. The mass of airis 12 g. For a compression ratio of 15, determine (a) the net work of the cycle, in kJ. (b) the thermal efficiency. (c) the mean effective pressure, in kPa.arrow_forward
- A gas-turbine engine with regeneration operates with two stages of compression and two stages of expansion. The pressure ratio across each stage of the compressor and the turbine is 3.5. The air enters each stage of the compressor at 300 K and each stage of the turbine at 1250 K. The compressor and the turbine efficiencies are 80% and 82%, respectively, and the effectiveness of the regenerator is 74%. Assuming variable specific heats for air; show the process in a T-s diagram; calculate the back work ratio; and determine the thermal efficiency of the cycle.arrow_forwardSteam enters the nozzle operating a steady state pressure of 2.5 MPa and a temperature of 300 °C ( H1 = 3008.8 kJ/kg) and leaves at a pressure of 1.7 MPa with a velocity of 470 m/s. The rate of flow of steam through the nozzle is 1360 kg/hr. Neglecting the inlet velocity of the steam and considering the flow in the nozzle is adiabatic, find:a. the exit enthalpy in kJ/kg, ( H2)b. the nozzle exit area ( in cm) if V exit is 0.132 m^3 /kgc. the systemarrow_forwardDesign a steam power cycle that can achieve a cycle thermal efficiency of at least 40 percent under the conditions that all turbines have isentropic efficiencies of 83 percent and all pumps have isentropic efficiencies of 65 percent. please include (i) System figures and T-s diagrams with labelled states and temperature, pressure, enthalpy, and entropy information for your design. (ii) Sample calculations.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY