EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.12, Problem 156RP
a)
To determine
The amount of work produced per cylinder per
(b)
To determine
The amount of work produced per cylinder per
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the mechanical efficiency of a diesel engine if friction power is 30 KW and brake power of 150 KW?
A test on a one-cylinder Otto cycle engine yields the following data: 950 N-m torque; 758
kPa mean effective pressure; 28-cm bore; 30.5-cm stroke; 300 rpm; and 0.003 kg/s fuel
consumption with a heating value of 41 860 kJ/kg. Determine (a) the engine thermal
efficiency; (b) the engine mechanical efficiency; (c) the fuel cost per hr if fuel costs 50
cents per liter. The specific gravity is 0.82.
At the beginning of compression an ideal dual combustion cycle using air has a pressure of 15 psia, a temperature of 75F and a specific volume of 13.2 ft3 per pound. For a compression ratio of 12 and a heat addition of 176 Btu/lb at constant volume and 176 Btu/lb at constant pressure. Calculate The horsepower developed by an ideal engine operating on the cycle using 0.50 lb of air per second.
Chapter 9 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 9.12 - What are the air-standard assumptions?Ch. 9.12 - What is the difference between air-standard...Ch. 9.12 - How does the thermal efficiency of an ideal cycle,...Ch. 9.12 - What does the area enclosed by the cycle represent...Ch. 9.12 - Prob. 5PCh. 9.12 - Prob. 6PCh. 9.12 - Can the mean effective pressure of an automobile...Ch. 9.12 - Prob. 8PCh. 9.12 - What is the difference between spark-ignition and...Ch. 9.12 - Prob. 10P
Ch. 9.12 - Prob. 11PCh. 9.12 - Prob. 12PCh. 9.12 - Prob. 13PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Prob. 21PCh. 9.12 - Prob. 22PCh. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Prob. 27PCh. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Prob. 32PCh. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 35PCh. 9.12 - Prob. 36PCh. 9.12 - Prob. 37PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Prob. 40PCh. 9.12 - Prob. 41PCh. 9.12 - Prob. 42PCh. 9.12 - Prob. 43PCh. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 57PCh. 9.12 - Prob. 58PCh. 9.12 - Prob. 59PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 63PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 71PCh. 9.12 - Prob. 72PCh. 9.12 - Prob. 73PCh. 9.12 - Prob. 74PCh. 9.12 - Prob. 75PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 82PCh. 9.12 - Prob. 83PCh. 9.12 - Prob. 85PCh. 9.12 - 9–86 Consider a simple Brayton cycle using air as...Ch. 9.12 - 9–87 Air is used as the working fluid in a simple...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - 9–91E A gas-turbine power plant operates on a...Ch. 9.12 - Prob. 92PCh. 9.12 - 9–93 A gas-turbine power plant operates on the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - Prob. 95PCh. 9.12 - Prob. 96PCh. 9.12 - Prob. 97PCh. 9.12 - Prob. 98PCh. 9.12 - 9–99 A gas turbine for an automobile is designed...Ch. 9.12 - Prob. 100PCh. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - Prob. 106PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 108PCh. 9.12 - Prob. 109PCh. 9.12 - Prob. 110PCh. 9.12 - Prob. 111PCh. 9.12 - Prob. 112PCh. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Prob. 118PCh. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - Prob. 123PCh. 9.12 - Prob. 124PCh. 9.12 - Prob. 126PCh. 9.12 - Prob. 127PCh. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - Prob. 131PCh. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 134PCh. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - 9–137 Air at 7°C enters a turbojet engine at a...Ch. 9.12 - Prob. 138PCh. 9.12 - Prob. 139PCh. 9.12 - 9–140E Determine the exergy destruction associated...Ch. 9.12 - Prob. 141PCh. 9.12 - Prob. 142PCh. 9.12 - Prob. 143PCh. 9.12 - Prob. 144PCh. 9.12 - Prob. 146PCh. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 149PCh. 9.12 - Prob. 150RPCh. 9.12 - Prob. 151RPCh. 9.12 - Prob. 152RPCh. 9.12 - Prob. 153RPCh. 9.12 - Prob. 154RPCh. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 161RPCh. 9.12 - Prob. 162RPCh. 9.12 - Prob. 163RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 165RPCh. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 169RPCh. 9.12 - Prob. 170RPCh. 9.12 - Prob. 173RPCh. 9.12 - Prob. 174RPCh. 9.12 - Prob. 184FEPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - Prob. 186FEPCh. 9.12 - Prob. 187FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 189FEPCh. 9.12 - Prob. 190FEPCh. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...Ch. 9.12 - Prob. 198FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. Define any four performance parameters of a gas turbine engine with the help of well-defined equations.arrow_forwardAn engine is working on Otto cycle with the following specifications: Pressure and temperature of the intake air = 1 bar and 27oC; Compression ratio = 5;Maximum pressure allowable in the cycle = 32 bar;Index of compression and expansion = 1.25, Cylinder diameter =12 cm,Stroke length = 20 cm,Number of cycles per minute = 550rpm. Determine the following:(i) Pressure, specific volume and temperatures at all the points ofthe cycle; (ii) Mean effective pressure of the cycle;arrow_forwardThe volume ratios of compression and expansion for a diesel engine as measured from an indicator diagram are 16 and 8 respectively. The pressure and temperature at the beginning of the compression are 1 bar and 28°C. Assuming an ideal engine, determine the mean effective pressure, the ratio of maximum pressure to mean effective pressure and cycle efficiency. Also find the fuel consumption per kWh if the indicated thermal efficiency is 0.5 of ideal efficiency, mechanical efficiency is 0.8 and the calorific value of oil 42000 kJ/kg. Assume for air : cp = 1.005 kJ/kg K ; cv = 0.718 kJ/kg K, ã = 1.4. Please also draw the PV diagram.arrow_forward
- To determine the specific thrust of a simple turbojet, the behavior of the elements at the design point corresponding to a cruising speed of 270 m/sec (aircraft speed) and a height of 5,000 meters is given by the following data: Compression ratio: 8.0 Compressor inlet temperature 292°K Compressor inlet pressure 0.834 bar Turbine inlet temperature 1200°K Isentropic efficiency or internal efficiency of the compressor and turbine 90% Isentropic efficiency of the nozzle 95%arrow_forward4. Explain Figure Q6-4 FIGURE Q6-4 Thermal efficiency of the ideal Diesel cycle as a function of compression and cutoff ratios (k-1.4). 0.5 0.3 0.2 0.1 compression w for diesel engines 4 6 8 10 12 14 16 18 20 22 24 Compression ratio,arrow_forwardPlease Work it fast.arrow_forward
- How is the rpm (revolutions per minute) of an actual four-stroke gasoline engine related to the number of thermodynamic cycles? What would your answer be for a two-stroke engine?arrow_forwardWhat is the maximum thermal efficiency possible for a power cycle operating between 600°C and 110°C? (A) 47% (B) 56% (C) 63% (D) 74%arrow_forwardThe following data belong to a Diesel cycle : Compression ratio - 19 :1; Heat added - 2500 kJ/kg ; Lowest pressure in the cycle - 1 bar ; Lowest temperature in the cycle - 27°c. Determine the percent thermal efficiency of the cycle. Cp = 1.0, k - 1.4, R = 0.287arrow_forward
- An ideal Brayton cycle has a pressure ratio of 6:1. The temperature of the air is 27 °C at the inlet to the compressor and 1,022 °C at the inlet to the turbine. Take Specific heat at constant pressure and constant volume for air as 1.006 kJ/kg K and 0.717 kJ/kg K respectively. Calculate the thermal efficiency of the plant to one decimal place and include the correct unit (percentage).arrow_forwardA turboshaft engine comprising a gas generator and a free power turbine is selected to provide propulsive power for a helicopter. The helicopter is hovering in ISA conditions at an altitude of 4100 feet. The following data applies to this engine at this static max power operating point. Intake mass flow: 8.9 kg/s Compressor pressure ratio: 24.5 Compressor isentropic efficiency: 88% Mechanical efficiency: (HP & PT shaft) 99% Combustion chamber pressure loss Combustion chamber inlet pressure 4% Combustion efficiency 98.8% Combustion chamber exit temperature: 1585K Gas generator turbine isentropic efficiency: 92% Power turbine isentropic efficiency: 90% The effects of the intake and exhaust ducts may be ignored. It may be assumed that for: Air: Cp = 1.005 kJ/kg • K, y = 1.4, R = 0.287 kJ/kg • K Combustion gases: Cp = 1.148kJ/kg • K, y = 1.333, R = 0.287 kJ/kg • K A 6% direct bleed of air from the exit of the compressor is…arrow_forwardA turboshaft engine comprising a gas generator and a free power turbine is selected to provide propulsive power for a helicopter. The helicopter is hovering in ISA conditions at an altitude of 4100 feet. The following data applies to this engine at this static max power operating point. Intake mass flow: 8.9 kg/s Compressor pressure ratio: 24.5 Compressor isentropic efficiency: 88% Mechanical efficiency: (HP & PT shaft) 99% Combustion chamber pressure loss Combustion chamber inlet pressure 4% Combustion efficiency 98.8% Combustion chamber exit temperature: 1585K Gas generator turbine isentropic efficiency: 92% Power turbine isentropic efficiency: 90% The effects of the intake and exhaust ducts may be ignored. It may be assumed that for: Air: Cp = 1.005 kJ/kg • K, y = 1.4, R = 0.287 kJ/kg • K Combustion gases: Cp = 1.148kJ/kg • K, y = 1.333, R = 0.287 kJ/kg • K A 6% direct bleed of air from the exit of the compressor is…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY