EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.12, Problem 161RP
To determine
The compression ratio required for an ideal Otto cycle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please use international values
A compression ratio of 8 is achieved by using an ideal air-standard Otto cycle engine. The working fluid has a pressure of 100 kPa and a temperature of 27°C at the start of the compression process, and the constant volume heat addition process supplies 800 kJ/kg of heat to the working fluid. What are the (a )the temperature, volume and pressure of the air at the end of each process (in K, m3 and kPa) (b) the net work output/cycle [kJ/kg], and (c) the thermal efficiency of this engine cycle
A spark ignition engine that operates on Otto cycle has a compression ratio of 10. At the beginning of the compression process, air is at 100 kPa and 25 C. 750 kJ/kg of heat is transferred to air duringthe constant-volume heat-addition process. Consider the variation of specific heats with temperature.
1)Describe with the aid of diagrams the operational sequence of four stroke spark ignition engines
2)Explain the mechanical efficiency for ideal otto cycle of two and four stroke engines
Chapter 9 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 9.12 - What are the air-standard assumptions?Ch. 9.12 - What is the difference between air-standard...Ch. 9.12 - How does the thermal efficiency of an ideal cycle,...Ch. 9.12 - What does the area enclosed by the cycle represent...Ch. 9.12 - Prob. 5PCh. 9.12 - Prob. 6PCh. 9.12 - Can the mean effective pressure of an automobile...Ch. 9.12 - Prob. 8PCh. 9.12 - What is the difference between spark-ignition and...Ch. 9.12 - Prob. 10P
Ch. 9.12 - Prob. 11PCh. 9.12 - Prob. 12PCh. 9.12 - Prob. 13PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Prob. 21PCh. 9.12 - Prob. 22PCh. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Prob. 27PCh. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Prob. 32PCh. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 35PCh. 9.12 - Prob. 36PCh. 9.12 - Prob. 37PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Prob. 40PCh. 9.12 - Prob. 41PCh. 9.12 - Prob. 42PCh. 9.12 - Prob. 43PCh. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 57PCh. 9.12 - Prob. 58PCh. 9.12 - Prob. 59PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 63PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 71PCh. 9.12 - Prob. 72PCh. 9.12 - Prob. 73PCh. 9.12 - Prob. 74PCh. 9.12 - Prob. 75PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 82PCh. 9.12 - Prob. 83PCh. 9.12 - Prob. 85PCh. 9.12 - 9–86 Consider a simple Brayton cycle using air as...Ch. 9.12 - 9–87 Air is used as the working fluid in a simple...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - 9–91E A gas-turbine power plant operates on a...Ch. 9.12 - Prob. 92PCh. 9.12 - 9–93 A gas-turbine power plant operates on the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - Prob. 95PCh. 9.12 - Prob. 96PCh. 9.12 - Prob. 97PCh. 9.12 - Prob. 98PCh. 9.12 - 9–99 A gas turbine for an automobile is designed...Ch. 9.12 - Prob. 100PCh. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - Prob. 106PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 108PCh. 9.12 - Prob. 109PCh. 9.12 - Prob. 110PCh. 9.12 - Prob. 111PCh. 9.12 - Prob. 112PCh. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Prob. 118PCh. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - Prob. 123PCh. 9.12 - Prob. 124PCh. 9.12 - Prob. 126PCh. 9.12 - Prob. 127PCh. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - Prob. 131PCh. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 134PCh. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - 9–137 Air at 7°C enters a turbojet engine at a...Ch. 9.12 - Prob. 138PCh. 9.12 - Prob. 139PCh. 9.12 - 9–140E Determine the exergy destruction associated...Ch. 9.12 - Prob. 141PCh. 9.12 - Prob. 142PCh. 9.12 - Prob. 143PCh. 9.12 - Prob. 144PCh. 9.12 - Prob. 146PCh. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 149PCh. 9.12 - Prob. 150RPCh. 9.12 - Prob. 151RPCh. 9.12 - Prob. 152RPCh. 9.12 - Prob. 153RPCh. 9.12 - Prob. 154RPCh. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 161RPCh. 9.12 - Prob. 162RPCh. 9.12 - Prob. 163RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 165RPCh. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 169RPCh. 9.12 - Prob. 170RPCh. 9.12 - Prob. 173RPCh. 9.12 - Prob. 174RPCh. 9.12 - Prob. 184FEPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - Prob. 186FEPCh. 9.12 - Prob. 187FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 189FEPCh. 9.12 - Prob. 190FEPCh. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...Ch. 9.12 - Prob. 198FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An air standard diesel cycle has a compression ratio of 13 and a peak combustion temperature of 1681.55 C. If the heat rejected by the engine amounts to 3kW, determine the theoretical output power that can be produced by the engine.arrow_forwardA compression ignition engine operates on a diesel cycle has a compression ratio of 20 and uses air as the working fluid, the cut off ratio is 1.5. The air at the beginning of the compression process is at 100 kPa and 30 C. If the maximum temperature of the cycle is 2000 ºC. Under cold air standard assumptions at room temperature Explain the mechanical efficiency for an ideal diesel cycle of two and four stroke engines?arrow_forwardYour first customer asked for the following internal combustion engine to use it in a designed car: A four-cylinder, four-stroke, 3.2-L compression-ignition engine operates on the ideal diesel cycle with a compression ratio of 19. The air is at 95 kPa and 67°C at the beginning of the compression process and the engine speed is 1750 rpm. The engine uses light diesel fuel with a heating value of 42,500 kJ/kg, an air-fuel ratio of 28, and a combustion efficiency of 98 percent Describe the operational sequence of the used engine with the aid of sketches by constructing simple sketch representing the operation and plotting the P-V diagrams for each process during the cycle to show the following: - The input and output heat and net output work - The movement of the piston- The expansion and compression strokes- The air-fuel mixture intake and exhaust gasses - The spark plug when it is in the active mode - The complete cycle of ideal Otto and Diesel cycles that shows the input and output…arrow_forward
- Question 2 An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio of 10. Heat is added to the combustion chamber producing air at 1700 K. The air passes through the engine at a rate of 1 kg/s. The air at the beginning of the compression is at 70 kPa and 280 K. Using the variable specific heat approached, determine, for this engine, (a) the net power produced (b) the thermal efficiency Compressor 70 kPa 280 K Combustion chamber 1700 K Ⓡ Turbinearrow_forwardExhaust gases from the turbine of a simple Brayton cycle are quite hot and may be used for other thermal purposes. One proposed use is generating saturated steam at 110°C from water at 30°C in a boiler. This steam will be distributed to several buildings on a college campus for space heating. A Brayton cycle with a pressure ratio of 6 is to be used for this purpose. Plot the power produced, the flow rate of produced steam, and the maximum cycle temperature as functions of the rate at which heat is added to the cycle. The temperature at the turbine inlet is not to exceed 2000°C.arrow_forwardI need correct solutionarrow_forward
- A four-cylinder, four-stroke, 1.8-L modern highspeed compression-ignition engine operates on the ideal dual cycle with a compression ratio of 16. The air is at 95 kPa and 70°C at the beginning of the compression process, and the engine speed is 2200 rpm. Equal amounts of fuel are burned at constant volume and at constant pressure. The maximum allowable pressure in the cycle is 7.5 MPa due to material strength limitations. Using constant specific heats at 1000 K, determine the mean effective pressure.arrow_forwardA four-cylinder, four-stroke, 1.8-L modern highspeed compression-ignition engine operates on the ideal dual cycle with a compression ratio of 16. The air is at 95 kPa and 70°C at the beginning of the compression process, and the engine speed is 2200 rpm. Equal amounts of fuel are burned at constant volume and at constant pressure. The maximum allowable pressure in the cycle is 7.5 MPa due to material strength limitations. Using constant specific heats at 1000 K, determine the net power output.arrow_forwardThe pressure ratio of a gas-turbine power plant operating on an ideal Brayton cycle is 8. The gas temperature is 300 degrees Fahrenheit at the compressor inlet and 1300 degrees Fahrenheit at the turbine inlet. Assuming an 80 percent compressor efficiency and an 80 percent turbine efficiency. A regenerator with an 80 percent efficiency is installed at the power plant. Determine the variation of particular heats with temperature using specific heats. a. The back work ratio b.The thermal efficiencyarrow_forward
- In an air standard dual cycle two –thirds of the total heat supply occurs at constant volume . The state at the beginning of the compression process is 90kPa and 20°C and the compression ratio is 9. if the total heat supply is2100kJ/kg, Determine the efficiency of the cycle.arrow_forward3. Show that the thermal efficiency of the Carnct cycle in terms of the isentropic compression ratio r is given by e = 1-1. k-1arrow_forwardA 4 stroke spark ignition engine operates on an ideal Otto cycle with a compression ratio of 8.5. This engine compresses the fresh air-fuel mixture from its initial volume to a final volume of 75cm. The air is at 101kPa and 20°C prior to the compression stroke. Temperature at the end of isentropic expansion is 750K. Make air standard assumption to solve this problem. Air properties: cp = 1.005KJ/kg.K; cy = 0.718KJ/kg.K; R = 0.287KJ/kg.K. Determine, • Mass of air in the engine (in kg). (answer to 4 decimals) (Hint: treat air as ideal gas at start of intake stroke - point 1 on P-V diagram) Isentropic Isentropic * Iout BDC TDCarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY