EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.12, Problem 109P
a)
To determine
The amount of heat transfer in the regenerator.
b)
To determine
The thermal efficiency of the turbine.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Air enters the compressor of a regenerative gasturbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 80 percent, and the air enters the turbine at 1400 K. For a turbine efficiency of 90 percent, determine the thermal efficiency. Assume variable specific heats for air.
Air enters the compressor of a regenerative gas-turbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 80 percent, and the air enters the turbine at 1400 K. For a turbine efficiency of 90 percent, determine (a) the amount of heat transfer in the regenerator and (b) the thermal efficiency. Assume variable specific heats for air.
Please solve the ff.
Chapter 9 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 9.12 - What are the air-standard assumptions?Ch. 9.12 - What is the difference between air-standard...Ch. 9.12 - How does the thermal efficiency of an ideal cycle,...Ch. 9.12 - What does the area enclosed by the cycle represent...Ch. 9.12 - Prob. 5PCh. 9.12 - Prob. 6PCh. 9.12 - Can the mean effective pressure of an automobile...Ch. 9.12 - Prob. 8PCh. 9.12 - What is the difference between spark-ignition and...Ch. 9.12 - Prob. 10P
Ch. 9.12 - Prob. 11PCh. 9.12 - Prob. 12PCh. 9.12 - Prob. 13PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Prob. 21PCh. 9.12 - Prob. 22PCh. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Prob. 27PCh. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Prob. 32PCh. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 35PCh. 9.12 - Prob. 36PCh. 9.12 - Prob. 37PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Prob. 40PCh. 9.12 - Prob. 41PCh. 9.12 - Prob. 42PCh. 9.12 - Prob. 43PCh. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 57PCh. 9.12 - Prob. 58PCh. 9.12 - Prob. 59PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 63PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 71PCh. 9.12 - Prob. 72PCh. 9.12 - Prob. 73PCh. 9.12 - Prob. 74PCh. 9.12 - Prob. 75PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 82PCh. 9.12 - Prob. 83PCh. 9.12 - Prob. 85PCh. 9.12 - 9–86 Consider a simple Brayton cycle using air as...Ch. 9.12 - 9–87 Air is used as the working fluid in a simple...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - 9–91E A gas-turbine power plant operates on a...Ch. 9.12 - Prob. 92PCh. 9.12 - 9–93 A gas-turbine power plant operates on the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - Prob. 95PCh. 9.12 - Prob. 96PCh. 9.12 - Prob. 97PCh. 9.12 - Prob. 98PCh. 9.12 - 9–99 A gas turbine for an automobile is designed...Ch. 9.12 - Prob. 100PCh. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - Prob. 106PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 108PCh. 9.12 - Prob. 109PCh. 9.12 - Prob. 110PCh. 9.12 - Prob. 111PCh. 9.12 - Prob. 112PCh. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Prob. 118PCh. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - Prob. 123PCh. 9.12 - Prob. 124PCh. 9.12 - Prob. 126PCh. 9.12 - Prob. 127PCh. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - Prob. 131PCh. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 134PCh. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - 9–137 Air at 7°C enters a turbojet engine at a...Ch. 9.12 - Prob. 138PCh. 9.12 - Prob. 139PCh. 9.12 - 9–140E Determine the exergy destruction associated...Ch. 9.12 - Prob. 141PCh. 9.12 - Prob. 142PCh. 9.12 - Prob. 143PCh. 9.12 - Prob. 144PCh. 9.12 - Prob. 146PCh. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 149PCh. 9.12 - Prob. 150RPCh. 9.12 - Prob. 151RPCh. 9.12 - Prob. 152RPCh. 9.12 - Prob. 153RPCh. 9.12 - Prob. 154RPCh. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 161RPCh. 9.12 - Prob. 162RPCh. 9.12 - Prob. 163RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 165RPCh. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 169RPCh. 9.12 - Prob. 170RPCh. 9.12 - Prob. 173RPCh. 9.12 - Prob. 174RPCh. 9.12 - Prob. 184FEPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - Prob. 186FEPCh. 9.12 - Prob. 187FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 189FEPCh. 9.12 - Prob. 190FEPCh. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...Ch. 9.12 - Prob. 198FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q5/ For a steam power plant, the turbine operates isentropically and adiabatically with inlet steam at 6800 kPa and 550 °C and the exhaust steam enters the condenser at 50 °C. Saturated liquid water leaves the condenser, and is pumped to the boiler. Neglecting pump work and kinetic and potential energy changes, determine the thermal efficiency of the cycle?arrow_forwardA Gas Turbine Power Plant receives air at 14 psia, 80F. Air is partially compressed to 55 psia and cooled to a temperature difference of 60 F and then compressed to a final pressure of 105 psia. Hot gas enters the turbine at 1460 F and is used to preheat compressed air. Internal efficiency of the turbine is 90% and compressor is 88%. Mechanical efficiency for both is 85 %. Generator efficiency is 95%. The regenerator effectiveness is 60 % and the combustor efficiency is 90 %. Fuel is having a specific gravity of 0.927 at 77 F. Determine the plant thermal efficiency.arrow_forwardSteam enters the turbine of a simple vapor power plant with a pressure of 10 MPa and temperature of 580°C and expands adiabatically to 6 kPa. Determine (a) temperature at the turbine exit. Also calculate the (b) work input in the pump (in kJ/kg) and the (c) cycle thermal efficiency, in %. Use g = 9.81 m/s2 or 32.2 ft/s2 , T(K)=T(°C)+273 and T(R)=T(°F)+460, where applicable.arrow_forward
- You must solve all questions.arrow_forwardI need the answer as soon as possiblearrow_forwardConsider a two stage compression and two stage expansion in an ideal gas-turbine cycle. The air enters each stage of the compressor at 350 K and each stage of the turbine at 1240 K. The pressure ratio across each stage of the compressor and turbine is 3.5. Assuming an efficiency of 82 percent for each compressor stage and an efficiency of 88 percent for each turbine stage. Determine the thermal efficiency of the cycle, assuming (a) no regenerator is used and (b) a regenerator with 85 percent effectiveness is used.arrow_forward
- Consider an air-standard Carnot cycle in which the overall ideal thermal efficiency is 75% and the heat supplied is 50 kJ/kg. The pressure and specific volume at the end of isothermal expansion process is 600kPa and 0.5m3/kg, respectively. Determine (a) the maximum and minimum temperature of the cycle in K, (b) the specific volume, in m3/kg and the pressure, in kPa at the beginning of heat addition process, and (c) the net work developed in kJ/kg. Show the P-V and T-s diagram.arrow_forwardA steam turbine consumes 9 kg/k W-hr when steam is supplied at a pressure of 10 bar and at 400. The exhaust takes place at 0.1 bar. Compare the efficiency of the engine with the Rankine efficiency.arrow_forwardNo practical process, especially those involving heat, are 100% efficient. Assess the energy losses of a typical gas turbine system.arrow_forward
- An ideal gas turbine cycle consisting of 2 stages of compression and 2 stages of expansion has an overall pressure ratio of 9. Air enters the compressors at the temperature of 320 K while, being intercooled between the stages. Air enters the first compressor at 100 kPa and the pressure ratio of cach of the compressors are selected in a way that minimizes the total power input for the compressors. The high-pressure turbine (First one) drives the compressors and the low-pressure one produces power output. The compressors and both the high-pressure and low-pressure turbines can be assumed ideal. To increase the efficiency of the cycle a regenerator with effectiveness of 85% is used to recover some heat from the exhaust of the second turbine. In this cycle, air with the temperature of 1400 K enters the first turbine. After expansion in the first turbine, air is reheated to the same temperature at the inlet of the first turbine (1400 K). You can consider constant specific heats of c,=1.005…arrow_forwardC. In an ideal gas turbine power device, the pressure ratio is 6, the temperature entering the compressor is 27°C, and the maximum allowable temperature of the turbine is 816°C. What is the efficiency of this power device when it is carried out in reversible operation? However, the specific ratio is 1.4. (a)20% (b)30% (c)40% (d)50%arrow_forwardAn Otto cycle uses air as its working fluid. The compression ratio of the cycle is 10. 1,800 kJ/kg of heat is added during the heat addition process. If the temperature and pressure at the end of compression are 444C and 2,168Kpa. Assume constant specific heats for the analysis, determine (a) the temperature and pressure at the end of each process, (b) the thermal efficiency of the process (c) the net Work of the cycle (d)mean effective pressure of the cycle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY