Concept explainers
(a)
The temperature at the end of expansion process.
(a)
Answer to Problem 167RP
The temperature at the end of expansion process is
Explanation of Solution
Determine the state 2 temperature in the polytropic compression process 1-2.
Here, the state 1 temperature is
Determine the state 2 pressure in the polytropic compression process 1-2.
Here, the state 1 pressure is
Determine the work per unit mass in the polytropic compression process 1-2.
Here, the universal gas constant is
Determine the state 3 temperature in the constant volume heat addition process 2-3.
Here, the state 2 temperature is
Determine the heat transfer per unit mass in the constant volume heat addition process 2-3.
Here, the specific heat of constant volume is
Determine the state 4 temperature in the polytropic expansion process 3-4.
Here, the specific volume at state 3 is
Determine the state 4 pressure in the polytropic expansion process 3-4.
Here, the state 3 pressure is
Determine the work per unit mass in the polytropic compression process 3-4.
Here, the universal gas constant is
Conclusion:
From the Table A-2 (a), “Ideal-gas specific heats of various common gases”, obtain the value of universal gas constant of air is
Refer to Table A-2 (b), “Ideal-gas specific heats of various common gases”, obtain the below properties at the average temperature of 850 K using interpolation method of two variables.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y are temperature and specific heat of constant pressure.
Show the temperature at 800 K and 900 K as in Table (1).
S. No |
Temperature, K |
specific heat of constant pressure, |
1 | 800 K | 1.099 |
2 | 850 K | |
3 | 900 K | 1.121 |
Calculate specific heat of constant pressure at an average temperature of 850 K for liquid phase using interpolation method.
Substitute 800 K for
From above calculation the specific heat of constant pressure is
Similarly repeat the interpolation method for specific heat of constant volume and ratio of specific heat as:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the temperature at the end of expansion process is
Substitute
Substitute
(b)
The net-work output at the constant volume heat rejection.
The thermal efficiency at the constant volume heat rejection.
(b)
Answer to Problem 167RP
The net-work output at the constant volume heat rejection is
The thermal efficiency at the constant volume heat rejection is
Explanation of Solution
Determine the net-work output at the constant volume heat rejection.
Determine the thermal efficiency at the constant volume heat rejection.
Conclusion:
Substitute
Thus, the net-work output at the constant volume heat rejection is
Substitute
Thus, the thermal efficiency at the constant volume heat rejection is
(c)
The mean effective pressure at the constant volume heat rejection.
(c)
Answer to Problem 167RP
The mean effective pressure at the constant volume heat rejection is
Explanation of Solution
Determine the initial volume at the constant volume heat rejection.
Determine the mean effective pressure at the constant volume heat rejection.
Here, the compression ratio is
Note:
Conclusion:
Substitute
Substitute
Thus, the mean effective pressure at the constant volume heat rejection is
(d)
The engine speed for a given net power.
(d)
Answer to Problem 167RP
The engine speed for a given net power is
Explanation of Solution
Determine the clearance volume at the beginning of compression process.
Here, the volume of the gasoline engine is
Determine the initial volume.
Determine the total mass contained in the cylinder.
Determine the engine speed for a net power output of 50 kW.
Note: the two revolutions in one cycle in four-stroke engines.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Thus, the engine speed for a given net power is
(e)
The specific fuel consumption.
(e)
Answer to Problem 167RP
The specific fuel consumption is
Explanation of Solution
Determine the mass of fuel burned during one cycle.
Here, the air-fuel ratio is
Determine the specific fuel consumption.
Conclusion:
Substitute 16 for AF and
Substitute
Thus, the specific fuel consumption is
Want to see more full solutions like this?
Chapter 9 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- A spring package with two springs and an external force, 200N. The short spring has a loin of 35 mm. Constantly looking for spring for short spring so that total compression is 35 mm (d). Known values: Long spring: Short spring:C=3.98 N/mm Lo=65mmLo=87.4mmF=c·fTotal compression is same for both spring. 200 = (3.98(c1) × 35) + (c₂ × 35) 200 = 139.3 + 35c₂ 200 - 139.3 = 35c₂ 60.7 = 35c₂ c₂ = 60.7/35 Short spring (c₂) = 1.73 N/mm According to my study book, the correct answer is 4.82N/mm What is wrong with the calculating?arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- 20. [Ans. 9; 71.8 mm] A semi-elliptical laminated spring is made of 50 mm wide and 3 mm thick plates. The length between the supports is 650 mm and the width of the band is 60 mm. The spring has two full length leaves and five graduated leaves. If the spring carries a central load of 1600 N, find: 1. Maximum stress in full length and graduated leaves for an initial condition of no stress in the leaves. 2. The maximum stress if the initial stress is provided to cause equal stress when loaded. [Ans. 590 MPa ; 390 MPa ; 450 MPa ; 54 mm] 3. The deflection in parts (1) and (2).arrow_forwardQ6/ A helical square section spring is set inside another, the outer spring having a free length of 35 mm greater than the inner spring. The dimensions of each spring are as follows: Mean diameter (mm) Side of square section (mm) Active turns Outer Inner Spring Spring 120 70 8 7 20 15 Determine the (1) Maximum deflection of the two springs and (2) Equivalent spring rate of the two springs after sufficient load has been applied to deflect the outer spring 60 mm. Use G = 83 GN/m².arrow_forwardQ2/ The bumper springs of a railway carriage are to be made of rectangular section wire. The ratio of the longer side of the wire to its shorter side is 1.5, and the ratio of mean diameter of spring to the longer side of wire is nearly equal to 6. Three such springs are required to bring to rest a carriage weighing 25 kN moving with a velocity of 75 m/min with a maximum deflection of 200 mm. Determine the sides of the rectangular section of the wire and the mean diameter of coils when the shorter side is parallel to the axis of the spring. The allowable shear stress is not to exceed 300 MPa and G = 84 kN/mm². Q6/ A belicalarrow_forward
- 11. A load of 2 kN is dropped axially on a close coiled helical spring, from a height of 250 mm. The spring has 20 effective turns, and it is made of 25 mm diameter wire. The spring index is 8. Find the maximum shear stress induced in the spring and the amount of compression produced. The modulus of rigidity for the material of the spring wire is 84 kN/mm². [Ans. 287 MPa; 290 mm]arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- S B Pin 6 mm Garrow_forwardMid-Term Exam 2024/2025 Post graduate/Applied Mechanics- Metallurgy Q1/ State the type of fault in the following case, and state the structure in which it will appear. АВСАВСВАСВАСАВСАВСarrow_forwardالثانية Babakt Momentum equation for Boundary Layer S SS -Txfriction dray Momentum equation for Boundary Layer What laws are important for resolving issues 2 How to draw. 3 What's Point about this.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY