Concept explainers
a)
The thermal efficiency of an ideal diesel cycle using constant specific heats.
a)
Answer to Problem 161RP
The thermal efficiency of ideal diesel cycle is
Explanation of Solution
Draw
Assuming constant specific heats
Write the temperature and specific volume relation for the isentropic compression process 1-2.
Here, the specific heat ratio is
Write the ideal gas relation for the constant pressure heat addition process 2-3.
For the process 2-3,
Here, temperature at state 3 is
Write the expression of heat input to the cycle
Here, the specific heat at constant pressure is
Write the temperature and specific volume relation for isentropic expansion process 3-4.
Write the expression of heat rejected for constant volume heat rejection process 4-1
Here, specific heat at constant volume is
Write the expression to calculate the net work output of the engine
Write the expression of thermal efficiency of the ideal diesel cycle
Conclusion:
From Table A-2a, “Ideal-gas specific heats of various common gases”, obtain the following properties of air at room temperature.
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the thermal efficiency of an ideal diesel cycle is
b)
The thermal efficiency of ideal diesel cycle using variable specific heats.
b)
Answer to Problem 161RP
The thermal efficiency of an ideal diesel cycle is
Explanation of Solution
Assuming variable specific heats
Write the specific volume and relative specific volume relation for the isentropic compression process 1-2.
Here, the compression ratio is r, relative specific volume at state 1 is
Write the pressure, temperature, and specific volume relation for isentropic compression process 2-3.
For process 2-3,
Write the expression of heat addition for constant pressure heat addition process 2-3
Write the specific volume and relative specific volume relation for the isentropic expansion process 3-4.
Here, relative specific volume at state 4 is
Write the expression of heat rejected for constant volume heat rejection process 4-1
Write the expression of thermal efficiency of an deal diesel cycle
Conclusion:
Refer Table A-17, “Ideal gas properties of air”, obtain the following properties of air at temperature
Substitute
Refer Table A-17, “Ideal gas properties of air”, obtain the properties of air at
Substitute
Refer Table A-17, “Ideal gas properties of air”, obtain the properties of air at
Substitute
Substitute
Refer Table A-17, “Ideal gas properties of air”, obtain the properties of air at
Substitute
Substitute
Thus, the thermal efficiency of an ideal diesel cycle is
Want to see more full solutions like this?
Chapter 9 Solutions
Thermodynamics: An Engineering Approach
- A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and 727°C. It is designed so that the maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. Determine the net work produced per unit mass of air each time this cycle is executed and the cycle’s thermal efficiency. Use constant specific heats at room temperaturearrow_forwardAn Otto cycle with a compression ratio of 8 begins its compression at 94 kPa and 10°C. The maximum cycle temperature is 900°C. Utilizing air-standard assumptions, determine the thermal efficiency of this cycle using variable specific heatsarrow_forwardAn aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio of 11.5. Heat is added to the cycle at a rate of 500 kW, air passes through the engine at a rate of 1 kg/s, and the air at the beginning of the compression is at 70 kPa and 0°C. Determine the power produced by this engine and its thermal efficiency. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg-K and k=1.4. The power produced by this engine is The thermal efficiency of this engine is KW. %.arrow_forward
- 2nd-Law Analysis of Otto Cycles Consider an engine operating on the ideal Otto cycle with a compression ratio of 8. At the beginning of the compression process, air is at 100 kPa and 17°C. During the constant-volume heat-addition process, 800 kJ/kg of heat is transferred to air from a source at 1700 K and waste heat is rejected to the surroundings at 290 K. Accounting for the variation of specific heats of air with temperature, determine (a) the exergy destruction associated with each of the four processes and the cycle and (b) the second-law efficiency of this cycle. P. kPa Isentropic in Jout Isentropic 100 38 V = V = V = V4arrow_forwardA four-cylinder, four-stroke spark-ignition engine operates on the ideal Otto cycle with a compression ratio of 11 and a total displacement volume of 1.8 liter. The air is at 90 kPa and 50C at the beginning of the compression process. The heat input is 1.5 kJ per cycle per cylinder. Accounting for the variation of specific heats of air with temperature, determine (a) the maximum temperature and pressure that occur during the cycle, (b) the net work per cycle per cylinder and the thermal efficiency of the cycle, (c) the mean effective pressure, and (d) the power output for an engine speed of 3000 rpm.arrow_forwardConsider a simple ideal Brayton cycle with air as the working fluid. The pressure ratio of the cycle is 6, and the minimum and maximum temperatures are 300 and 1300 K, respectively. Now the pressure ratio is doubled without changing the minimum and maximum temperatures in the cycle. Determine the change in the thermal efficiency of the cycle as a result of this modification. Assume variable specific heats for air.arrow_forward
- An ideal Diesel cycle has a maximum cycle temperature of 2000°C. The state of the air at the beginning of the compression is P₁ = 95 kPa and T₁ = 15°C. This cycle is executed in a four-stroke, eight-cylinder engine with a cylinder bore of 10 cm and a piston stroke of 12 cm. The minimum volume enclosed in the cylinder is 5 percent of the maximum cylinder volume. Determine the power produced by this engine when it is operated at 1300 rpm. Use constant specific heats at room temperature. The properties of air at room temperature are Cp = 1.005 kJ/kg-K, cy= 0.718 kJ/kg-K, R= 0.287 kJ/kg-K, and k = 1.4. The power produced by this engine is kW.arrow_forwardAn ideal Diesel cycle has a maximum cycle temperature of 2000°C. The state of the air at the beginning of the compression is P1 = 95 kPa and T1 = 15°C. This cycle is executed in a four-stroke, eight-cylinder engine with a cylinder bore of 10 cm and a piston stroke of 12 cm. The minimum volume enclosed in the cylinder is 5 percent of the maximum cylinder volume. Determine the power produced by this engine when it is operated at 1600 rpm. Use constant specific heats at room temperature.arrow_forwardA four-cylinder, four-stroke, spark-ignition engine operates on the ideal Otto cycle with a compression ratio of 11 and a total displacement volume of 1.8 L. The air is at 90 kPa and 50°C at the beginning of the compression process. The heat input is 0.5 kJ per cycle per cylinder. Determine the maximum temperature and pressure that occur during the cycle.arrow_forward
- An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio of 10. Heat is added to the cycle at a rate of 500 kW; air passes through the engine at a rate of 1 kg/s; and the air at the beginning of the compression is at 70 kPa and 08C. Determine the power produced by this engine and its thermal efficiency. Use constant specific heats at room temperature.arrow_forwardIn an ideal Brayton cycle with 2 stages of compression and 2 stages of expansion and a regenerator, the following enthalpy values are given: At the inlet of the compressors: 300 kJ/kg At the exit of the compressors: 600 kJ/kg At the inlet of the turbines: 1250 kJ/kg At the exit of the turbines: 700 kJ/kg If the effectiveness of the regenerator is 0.8, calculate the thermal efficiency of the cycle.arrow_forwardConsider a simple ideal Brayton cycle with air as the working fluid. The pressure ratio of the cycle is 7.2, and the minimum and maximum temperatures are 300 K and 1350 K, respectively. Now the pressure ratio is doubled without changing the minimum and the maximum temperatures in the cycle. Assuming constant specific heats for air at room temperature; show the initial process and process change in a T-s diagram; calculate the change in the net work output per unit mass; and determine the change in thermal efficiency of the cycle.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY