Repeat Prob. 9–125, assuming an efficiency of 86 percent for each compressor stage and an efficiency of 90 percent for each turbine stage.
a)
The back work ratio and thermal efficiency of the gas-turbine without regenerator.
Answer to Problem 126P
The back work ratio for the ideal gas-turbine cycle without regenerator is
The thermal efficiency of the gas-turbine without regenerator is
Explanation of Solution
Draw the
Write the pressure ratio relation for the process 1-2.
Here, relative pressure at state 1 is
Write the pressure ratio relation for the process 5-6.
Here, pressure at state 6 is
Write the expression to calculate the work input per kg to the compressors
Here, enthalpy at state 2 is
Write the expression to calculate the work done per kg by the turbines
Here, enthalpy at state 5 is
Write the expression to calculate the back work ratio
Write the expression to calculate the heat input for ideal gas-turbine cycle
Here, enthalpy at state 4 is
Write the expression to calculate the net work output per kg by the gas-turbine cycle
Write the expression to calculate the thermal efficiency of the gas-turbine cycle
Write the expression for the efficiency of the compressor
Here, the specific heat at constant pressure is
Write the expression for the efficiency of the turbine
Conclusion:
From Table A-17, “Ideal-gas properties of air”, obtain the following properties at the temperature of
Substitute 3 for
From the Table A-17, “Ideal-gas properties of air”.
Obtain the value of enthalpy on isentropic state
Write the formula of interpolation method of two variables.
Here, the variables denoted by x and y are relative pressure and enthalpy on isentropic state.
Show relative pressure and enthalpy on isentropic state values from the Table A-17.
Relative pressure | Enthalpy |
4.153 | 411.12 |
4.158 | ? |
4.522 | 421.26 |
Substitute
The enthalpy on isentropic state
Substitute
From Table A-17, “Ideal-gas properties of air”, obtain the following properties at the temperature of
Substitute
From the Table A-17, “Ideal-gas properties of air” obtain the values of enthalpy on isentropic states
Substitute
Substitute
Substitute
Substitute
Thus, the back work ratio for the ideal gas-turbine cycle without regenerator is
Substitute
Substitute
Substitute
Thus, the thermal efficiency of the gas-turbine without regenerator is
b)
The thermal efficiency of the gas turbine with regenerator.
Answer to Problem 126P
The thermal efficiency of the gas turbine with regenerator is
Explanation of Solution
Write the expression to calculate the heat used for the regeneration process
Here, the effectiveness of the regenerator is
Write the expression to calculate the new heat input to the gas-turbine cycle
Write the expression to calculate the thermal efficiency of the gas-turbine with regenerator
Conclusion:
Substitute 0.75 for
Substitute
Substitute
Thus, the thermal efficiency of the gas turbine with regenerator is
Want to see more full solutions like this?
Chapter 9 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- I need the answer as soon as possiblearrow_forward3. (#20ppVIII-20PrM) - -The entrance and exit enthalpies of a steam turbine are 4000 and 3000 kJ/kg respectively. What is the mass of steam entering the turbine if the generator power is 3 MW and generator efficiency is 90 %.arrow_forwardAir with mass flow rate of 1 kg/s enters the first stage of a compressor at 100 kPa and 300 K and exit the second stage of the compressor at 2677 kPa. If the compressed air outgoing from the first stage of the compressor passes through an intercooler, then enters the second stage of the compressor at temperature 353 K. What is the indicated isothermal efficiency for the compressor assuming ideal compression process with polytropica index n = 1.3 for both stages, no pressure loss in the intercooler, and the pressure ratio across the first and the second stage of the compressor are equal?arrow_forward
- In a real turbine, the entropy of the steam will increase somewhat. How will this affect the percentages of liquid and gas in the cycle? How will the efficiency be affected?arrow_forwardShow that the air standard efficiency of a gas turbine can be expressed in terms ofpressure ratio only.arrow_forwardA turbine is supplied with 22,500 lb./hr of steam at 166 psia and 480°F with an initial speed of 6000 fpm at an elevation of 5 ft. above the exhaust outlet. Radiation and frictional losses are 140,000 Btu/hr. At the entrance h1 = 1261.8 Btu/lb. At the exit, p2 = 3 in. Hg abs., v2 = 24,000 fpm, and h2= 1000.5 Btu/lb. Compute the work in horsepower.arrow_forward
- In Otto Cycle, air at 18oC is first compressed to one- eight of its original volume. If the heat input to the cycle is 460 KJ/Kg of air, determine The temperature of the remaining points in the cycle. The ratio of the maximum and minimum pressure in the cycle.arrow_forwardFor a specified pressure ratio, why does multistage compression with intercooling decrease the compressor work, and multistage expansion with reheating increase the turbine work?arrow_forwardNo practical process, especially those involving heat, are 100% efficient. Assess the energy losses of a typical gas turbine system.arrow_forward
- Air is to be compressed steadily and isentropically from 1 atm to 16 atm by a two-stage compressor. To minimize the total compression work, the intermediate pressure between the two stages must be (a) 3 atm (b) 4 atm (c) 8.5 atm (d) 9 atm (e) 12 atmarrow_forwardI want to know how this four pressures and enthalpies are selcectedarrow_forwardA steam turbine is equipped to bleed 6 percent of the inlet steam for feedwater heating. It is operated with 4 MPa and 350°C steam at the inlet, a bleed pressure of 800 kPa, and an exhaust pressure of 30 kPa.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY