
Concept explainers
(a)
The temperature at the end of expansion process.
(a)

Answer to Problem 167RP
The temperature at the end of expansion process is
Explanation of Solution
Determine the state 2 temperature in the polytropic compression process 1-2.
Here, the state 1 temperature is
Determine the state 2 pressure in the polytropic compression process 1-2.
Here, the state 1 pressure is
Determine the work per unit mass in the polytropic compression process 1-2.
Here, the universal gas constant is
Determine the state 3 temperature in the constant volume heat addition process 2-3.
Here, the state 2 temperature is
Determine the heat transfer per unit mass in the constant volume heat addition process 2-3.
Here, the specific heat of constant volume is
Determine the state 4 temperature in the polytropic expansion process 3-4.
Here, the specific volume at state 3 is
Determine the state 4 pressure in the polytropic expansion process 3-4.
Here, the state 3 pressure is
Determine the work per unit mass in the polytropic compression process 3-4.
Here, the universal gas constant is
Conclusion:
From the Table A-2 (a), “Ideal-gas specific heats of various common gases”, obtain the value of universal gas constant of air is
Refer to Table A-2 (b), “Ideal-gas specific heats of various common gases”, obtain the below properties at the average temperature of 850 K using interpolation method of two variables.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y are temperature and specific heat of constant pressure.
Show the temperature at 800 K and 900 K as in Table (1).
S. No |
Temperature, K |
specific heat of constant pressure, |
1 | 800 K | 1.099 |
2 | 850 K | |
3 | 900 K | 1.121 |
Calculate specific heat of constant pressure at an average temperature of 850 K for liquid phase using interpolation method.
Substitute 800 K for
From above calculation the specific heat of constant pressure is
Similarly repeat the interpolation method for specific heat of constant volume and ratio of specific heat as:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the temperature at the end of expansion process is
Substitute
Substitute
(b)
The net-work output at the constant volume heat rejection.
The thermal efficiency at the constant volume heat rejection.
(b)

Answer to Problem 167RP
The net-work output at the constant volume heat rejection is
The thermal efficiency at the constant volume heat rejection is
Explanation of Solution
Determine the net-work output at the constant volume heat rejection.
Determine the thermal efficiency at the constant volume heat rejection.
Conclusion:
Substitute
Thus, the net-work output at the constant volume heat rejection is
Substitute
Thus, the thermal efficiency at the constant volume heat rejection is
(c)
The mean effective pressure at the constant volume heat rejection.
(c)

Answer to Problem 167RP
The mean effective pressure at the constant volume heat rejection is
Explanation of Solution
Determine the initial volume at the constant volume heat rejection.
Determine the mean effective pressure at the constant volume heat rejection.
Here, the compression ratio is
Note:
Conclusion:
Substitute
Substitute
Thus, the mean effective pressure at the constant volume heat rejection is
(d)
The engine speed for a given net power.
(d)

Answer to Problem 167RP
The engine speed for a given net power is
Explanation of Solution
Determine the clearance volume at the beginning of compression process.
Here, the volume of the gasoline engine is
Determine the initial volume.
Determine the total mass contained in the cylinder.
Determine the engine speed for a net power output of 50 kW.
Note: the two revolutions in one cycle in four-stroke engines.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Thus, the engine speed for a given net power is
(e)
The specific fuel consumption.
(e)

Answer to Problem 167RP
The specific fuel consumption is
Explanation of Solution
Determine the mass of fuel burned during one cycle.
Here, the air-fuel ratio is
Determine the specific fuel consumption.
Conclusion:
Substitute 16 for AF and
Substitute
Thus, the specific fuel consumption is
Want to see more full solutions like this?
Chapter 9 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- The evaporator of a vapor compression refrigeration cycle utilizing R-123 as the refrigerant isbeing used to chill water. The evaporator is a shell and tube heat exchanger with the water flowingthrough the tubes. The water enters the heat exchanger at a temperature of 54°F. The approachtemperature difference of the evaporator is 3°R. The evaporating pressure of the refrigeration cycleis 4.8 psia and the condensing pressure is 75 psia. The refrigerant is flowing through the cycle witha flow rate of 18,000 lbm/hr. The R-123 leaves the evaporator as a saturated vapor and leaves thecondenser as a saturated liquid. Determine the following:a. The outlet temperature of the chilled waterb. The volumetric flow rate of the chilled water (gpm)c. The UA product of the evaporator (Btu/h-°F)d. The heat transfer rate between the refrigerant and the water (tons)arrow_forwardThe blade support of a hacksaw is subject to compression when a blade is installed and tightened. What is the state of stress (total combined stress) at A in MPa if the compression in the support is 1,524 N. Note: pay close attention to what is compression and what is tension and use a negative sign for the former. 100 mm 8 mm 3 mm 75 mm A 8 mm 3 mm B 50 mmarrow_forwardThe answer is not 4.378 ft/sarrow_forward
- The answer is not 0.293 marrow_forwardplease first help me solve this problem find the line of action and them help to find the forces like for example {fx= fy= mz= and determine the shear force in the nailsarrow_forwardAn open channel of square cross section had a flowrate of 17.2 ft³/s when first used. After extended use, the channel became 0.6-filled with silt. Determine the flowrate for this silted condition. Assume the Manning coefficient is the same for all the surfaces. Qs= ! ft³/sarrow_forward
- (Manning equation) The triangular flume shown in the figure below is built to carry its design flowrate, Qo, at a depth of 0.991 m as is indicated. If the flume is to be able to carry up to twice its design flowrate, Q = 2Qo, determine the freeboard, I, needed. ✓ -90°- 0.991 m i marrow_forwardWater flows in a 2-ft-wide rectangular channel at a rate of 10 ft³/s. If the water depth downstream of a hydraulic jump is 2.5 ft, determine (a) the water depth upstream of the jump, (b) the upstream and (c) downstream Froude numbers, and (d) the head loss across the jump. (a) y₁ = i (b) Fr₁ = i (c) Fr₂ = i (d) h₁ = ft ftarrow_forwardA hydraulic jump at the base of a spillway of a dam is such that the depths upstream and downstream of the jump are 0.8 and 3.2 m, respectively (see the Video). If the spillway is 12 m wide, what is the flowrate over the spillway? Q= i m³/sarrow_forward
- (Manning equation) Water flows in a rectangular channel of width b at a depth of b/2. Determine the diameter of a circular channel (in terms of b) that carries the same flowrate when it is half-full. Both channels have the same Manning coefficient, n, and slope. barrow_forward(Manning equation) A weedy irrigation canal of trapezoidal cross section is to carry 20 m³/s when built on a slope of 0.60 m/km. If the sides are at a 45° angle and the bottom is 8 m wide, determine the width of the waterline at the free surface. i marrow_forwardWater flows in a 1.2-m-diameter finished concrete pipe so that it is completely full and the pressure is constant all along the pipe. If the slope is So = 0.0073, (a) determine the flowrate by using open-channel flow methods. Compare this result with (b) that obtained using the pipe flow methods of Chapter 8 (Use Colebrook formula, Table 8.1, Table 10.1 and assume that Re > 10º). (a) Q = i (b) Q = i m³/s m³/sarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





