Concept explainers
Rumor spread–Gompertz growth model. The rate of propagation of a rumor is assumed to satisfy the Gompertz growth model
where N(t) is the number of individuals who have heard the rumor at time t.
(A) Show that
(B) Graph the particular solutions that satisfy N(0) = 100 and N(0) = 200.
(C) Discuss the effect of the value of N(0) on the long-term propagation of this rumor.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- 4. [10 marks] Let T be the following tree: Find a graph G whose block graph BL(G) is isomorphic to T. Explain why your answer is correct.arrow_forward5. [10 marks] Determine whether the graph below has a perfect matching. Explain why your answer is correct. ข พarrow_forward(c) Utilize Fubini's Theorem to demonstrate that E(X)= = (1- F(x))dx.arrow_forward
- (c) Describe the positive and negative parts of a random variable. How is the integral defined for a general random variable using these components?arrow_forwardLet k ≥ 1, and let G be a k-regular bipartite graph with bipartition X, Y . Prove that |X| is the minimum size of a vertex cover in G.arrow_forward3. [10 marks] Let Go = (V,E) and G₁ = (V,E₁) be two graphs on the same set of vertices. Let (V, EU E1), so that (u, v) is an edge of H if and only if (u, v) is an edge of Go or of G1 (or of both). H = (a) Show that if Go and G₁ are both Eulerian and En E₁ = Ø (i.e., Go and G₁ have no edges in common), then H is also Eulerian. (b) Give an example where Go and G₁ are both Eulerian, but H is not Eulerian.arrow_forward
- 26. (a) Provide an example where X, X but E(X,) does not converge to E(X).arrow_forward(b) Demonstrate that if X and Y are independent, then it follows that E(XY) E(X)E(Y);arrow_forward(d) Under what conditions do we say that a random variable X is integrable, specifically when (i) X is a non-negative random variable and (ii) when X is a general random variable?arrow_forward
- 29. State the Borel-Cantelli Lemmas without proof. What is the primary distinction between Lemma 1 and Lemma 2?arrow_forward(c) Explain the Dominated Convergence Theorem (DCT) without providing a proof.arrow_forward(b) Define the Integral of a non-negative random variable and state the associated well-known theorem.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill