![Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134668574/9780134668574_largeCoverImage.gif)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
14th Edition
ISBN: 9780134668574
Author: Raymond A. Barnett, Michael R. Ziegler, Karl E. Byleen, Christopher J. Stocker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.1, Problem 3E
To determine
To find: The derivative of
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Let a = (4, -2, -7) and 6 = (2,5, 3).
(ã − ò) × (ã + b) =
4. Suppose that P(X = 1) = P(X = -1) = 1/2, that Y = U(-1, 1) and that X
and Y are independent.
(a) Show, by direct computation, that X + Y = U(-2, 2).
(b) Translate the result to a statement about characteristic functions.
(c) Which well-known trigonometric formula did you discover?
9. The concentration function of a random variable X is defined as
Qx(h) = sup P(x ≤ X ≤x+h), h>0.
x
(a) Show that Qx+b (h) = Qx(h).
(b) Is it true that Qx(ah) =aQx(h)?
(c) Show that, if X and Y are independent random variables, then
Qx+y (h) min{Qx(h). Qy (h)).
To put the concept in perspective, if X1, X2, X, are independent, identically
distributed random variables, and S₁ = Z=1Xk, then there exists an absolute
constant, A, such that
A
Qs, (h) ≤
√n
Some references: [79, 80, 162, 222], and [204], Sect. 1.5.
Chapter 9 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Ch. 9.1 - Show that y=Cx+1 is the general solution of the...Ch. 9.1 - Prob. 2MPCh. 9.1 - Prob. 3MPCh. 9.1 - Prob. 4MPCh. 9.1 - Prob. 5MPCh. 9.1 - Prob. 1EDCh. 9.1 - Prob. 2EDCh. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3E
Ch. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - Prob. 7ECh. 9.1 - Prob. 8ECh. 9.1 - In Problems 110, find the derivative. (If...Ch. 9.1 - Prob. 10ECh. 9.1 - Prob. 11ECh. 9.1 - In Problems 1120, show that the given function is...Ch. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Prob. 16ECh. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Prob. 21ECh. 9.1 - In Problems 2124, determine which of the slope...Ch. 9.1 - In Problems 2124, determine which of the slope...Ch. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - In Problems 2528, use the appropriate slope...Ch. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - In Problems 2938, show that the given function y...Ch. 9.1 - Prob. 30ECh. 9.1 - Prob. 31ECh. 9.1 - In Problems 2938, show that the given function y...Ch. 9.1 - Prob. 33ECh. 9.1 - Prob. 34ECh. 9.1 - Prob. 35ECh. 9.1 - Prob. 36ECh. 9.1 - Prob. 37ECh. 9.1 - Prob. 38ECh. 9.1 - Prob. 39ECh. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Prob. 42ECh. 9.1 - Prob. 43ECh. 9.1 - If y is defined implicitly by the given equation,...Ch. 9.1 - Prob. 45ECh. 9.1 - Prob. 46ECh. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Prob. 49ECh. 9.1 - Prob. 50ECh. 9.1 - Prob. 51ECh. 9.1 - Prob. 52ECh. 9.1 - Prob. 53ECh. 9.1 - Prob. 54ECh. 9.1 - Prob. 55ECh. 9.1 - In Problems 55 and 56, use the general solution y...Ch. 9.1 - Prob. 57ECh. 9.1 - Prob. 58ECh. 9.1 - In Problems 59 and 60, use window dimensions Xmin...Ch. 9.1 - Prob. 60ECh. 9.1 - Prob. 61ECh. 9.1 - Prob. 62ECh. 9.1 - Prob. 63ECh. 9.1 - Prob. 64ECh. 9.1 - Prob. 65ECh. 9.1 - Prob. 66ECh. 9.1 - Rumor spreadGompertz growth model. The rate of...Ch. 9.2 - Solve: y=4x3y2.Ch. 9.2 - Prob. 2MPCh. 9.2 - Repeat Example 3 if the mothballs lose half their...Ch. 9.2 - Prob. 4MPCh. 9.2 - Prob. 5MPCh. 9.2 - Prob. 1EDCh. 9.2 - Prob. 2EDCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - In Problems 18, find the most general...Ch. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - In Problems 912, write a differential equation...Ch. 9.2 - In Problems 912, write a differential equation...Ch. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.2 - Prob. 21ECh. 9.2 - In Problems 2130, find the general solution for...Ch. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - In Problems 2130, find the general solution for...Ch. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - In Problems 2130, find the general solution for...Ch. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - Prob. 32ECh. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - In Problems 3140, find the general solution for...Ch. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - In Problems 3140, find the general solution for...Ch. 9.2 - Prob. 41ECh. 9.2 - Prob. 42ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - In Problems 4146, find the general solution for...Ch. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - Prob. 49ECh. 9.2 - Prob. 50ECh. 9.2 - Prob. 51ECh. 9.2 - Prob. 52ECh. 9.2 - Prob. 53ECh. 9.2 - Prob. 54ECh. 9.2 - Prob. 55ECh. 9.2 - Prob. 56ECh. 9.2 - Prob. 57ECh. 9.2 - Prob. 58ECh. 9.2 - Prob. 59ECh. 9.2 - Prob. 60ECh. 9.2 - Advertising. A company is using radio advertising...Ch. 9.2 - Prob. 62ECh. 9.2 - Prob. 63ECh. 9.2 - Prob. 64ECh. 9.2 - Prob. 65ECh. 9.2 - Prob. 66ECh. 9.2 - Prob. 67ECh. 9.2 - Prob. 68ECh. 9.2 - Prob. 69ECh. 9.2 - Prob. 70ECh. 9.2 - Prob. 71ECh. 9.2 - Prob. 72ECh. 9.2 - Newtons law of cooling states that the rate of...Ch. 9.2 - Prob. 74ECh. 9.2 - Population growth. A culture of bacteria is...Ch. 9.2 - Prob. 76ECh. 9.2 - Prob. 77ECh. 9.2 - Prob. 78ECh. 9.2 - Prob. 79ECh. 9.2 - Prob. 80ECh. 9.2 - Prob. 81ECh. 9.2 - Learning. The number of words per minute. N, a...Ch. 9.2 - Prob. 83ECh. 9.3 - Solve:xy+3y=4x.Ch. 9.3 - Prob. 2MPCh. 9.3 - Repeat Example 3 if the account earns 5%...Ch. 9.3 - If D = 70 + 2p(t) + 2p(t), S = 30 + 6p(t) + 3p(t)....Ch. 9.3 - Repeat Example 5 if water is released from the...Ch. 9.3 - Prob. 1EDCh. 9.3 - Prob. 2EDCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - In Problems 2334, find the integrating factor, the...Ch. 9.3 - Prob. 25ECh. 9.3 - In Problems 2334, find the integrating factor, the...Ch. 9.3 - Prob. 27ECh. 9.3 - Prob. 28ECh. 9.3 - In Problems 2334, find the integrating factor, the...Ch. 9.3 - Prob. 30ECh. 9.3 - Prob. 31ECh. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.3 - In Problems 2334, find the integrating factor, the...Ch. 9.3 - Prob. 35ECh. 9.3 - Prob. 36ECh. 9.3 - Prob. 37ECh. 9.3 - Prob. 38ECh. 9.3 - In Problems 3514, find the integrating factor fix...Ch. 9.3 - In Problems 3514, find the integrating factor fix...Ch. 9.3 - Prob. 41ECh. 9.3 - Prob. 42ECh. 9.3 - Prob. 43ECh. 9.3 - Prob. 44ECh. 9.3 - Prob. 45ECh. 9.3 - Prob. 46ECh. 9.3 - Prob. 47ECh. 9.3 - Prob. 48ECh. 9.3 - Prob. 49ECh. 9.3 - Prob. 50ECh. 9.3 - Prob. 51ECh. 9.3 - Prob. 52ECh. 9.3 - Prob. 53ECh. 9.3 - Prob. 54ECh. 9.3 - Prob. 55ECh. 9.3 - Prob. 56ECh. 9.3 - Prob. 57ECh. 9.3 - Prob. 58ECh. 9.3 - Prob. 59ECh. 9.3 - Prob. 60ECh. 9.3 - Prob. 61ECh. 9.3 - Prob. 62ECh. 9.3 - Prob. 63ECh. 9.3 - Prob. 64ECh. 9.3 - Prob. 65ECh. 9.3 - Prob. 66ECh. 9.3 - Supply-demand. The supply S and demand D for a...Ch. 9.3 - Prob. 68ECh. 9.3 - Pollution. A 1,000-gallon holding tank contains...Ch. 9.3 - Pollution. Rework Problem 69 if water is entering...Ch. 9.3 - Pollution. Rework Problem 69 if water is entering...Ch. 9.3 - Prob. 72ECh. 9.3 - Pollution. Refer to Problem 69. When will the tank...Ch. 9.3 - Prob. 74ECh. 9.3 - Prob. 75ECh. 9.3 - Prob. 76ECh. 9.3 - Prob. 77ECh. 9.3 - In an article in the College Mathematics Journal...Ch. 9.3 - Prob. 79ECh. 9.3 - In 1960, William K. Estes proposed the following...Ch. 9 - In Problems 1 and 2, show that the given function...Ch. 9 - In Problems 1 and 2, show that the given function...Ch. 9 - In Problems 3 and 4, determine which of the...Ch. 9 - In Problems 3 and 4, determine which of the...Ch. 9 - In Problems 5 and 6, use the appropriate slope...Ch. 9 - In Problems 5 and 6, use the appropriate slope...Ch. 9 - In Problems 7 and 8, write a differential equation...Ch. 9 - In Problems 7 and 8, write a differential equation...Ch. 9 - In Problems 9 and 10, describe in words the rate...Ch. 9 - In Problems 9 and 10, describe in words the rate...Ch. 9 - In Problems 1116, determine whether the...Ch. 9 - In Problems 1116, determine whether the...Ch. 9 - In Problems 1116, determine whether the...Ch. 9 - In Problems 1116, determine whether the...Ch. 9 - In Problems 1116, determine whether the...Ch. 9 - Prob. 16RECh. 9 - In Problems 1724, find the general solution....Ch. 9 - In Problems 1724, find the general solution....Ch. 9 - In Problems 1724, find the general solution....Ch. 9 - In Problems 1724, find the general solution....Ch. 9 - In Problems 1724, find the general solution....Ch. 9 - In Problems 1724, find the general solution....Ch. 9 - Prob. 23RECh. 9 - In Problems 1724, find the general solution....Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - In Problems, 2532, find the particular solution...Ch. 9 - Solve the following differential equation two...Ch. 9 - Give an example of an equation that can be solved...Ch. 9 - Prob. 35RECh. 9 - Prob. 36RECh. 9 - Prob. 37RECh. 9 - Prob. 38RECh. 9 - Prob. 39RECh. 9 - Prob. 40RECh. 9 - Prob. 41RECh. 9 - Prob. 42RECh. 9 - Prob. 43RECh. 9 - Prob. 44RECh. 9 - Prob. 45RECh. 9 - Prob. 46RECh. 9 - Prob. 47RECh. 9 - Rumor spread. A single individual starts a rumor...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 29 Suppose that a mound-shaped data set has a must mean of 10 and standard deviation of 2. a. About what percentage of the data should lie between 6 and 12? b. About what percentage of the data should lie between 4 and 6? c. About what percentage of the data should lie below 4? 91002 175/1 3arrow_forward2,3, ample and rical t? the 28 Suppose that a mound-shaped data set has a mean of 10 and standard deviation of 2. a. About what percentage of the data should lie between 8 and 12? b. About what percentage of the data should lie above 10? c. About what percentage of the data should lie above 12?arrow_forward27 Suppose that you have a data set of 1, 2, 2, 3, 3, 3, 4, 4, 5, and you assume that this sample represents a population. The mean is 3 and g the standard deviation is 1.225.10 a. Explain why you can apply the empirical rule to this data set. b. Where would "most of the values" in the population fall, based on this data set?arrow_forward
- 30 Explain how you can use the empirical rule to find out whether a data set is mound- shaped, using only the values of the data themselves (no histogram available).arrow_forward5. Let X be a positive random variable with finite variance, and let A = (0, 1). Prove that P(X AEX) 2 (1-A)² (EX)² EX2arrow_forward6. Let, for p = (0, 1), and xe R. X be a random variable defined as follows: P(X=-x) = P(X = x)=p. P(X=0)= 1-2p. Show that there is equality in Chebyshev's inequality for X. This means that Chebyshev's inequality, in spite of being rather crude, cannot be improved without additional assumptions.arrow_forward
- 4. Prove that, for any random variable X, the minimum of EIX-al is attained for a = med (X).arrow_forward8. Recall, from Sect. 2.16.4, the likelihood ratio statistic, Ln, which was defined as a product of independent, identically distributed random variables with mean 1 (under the so-called null hypothesis), and the, sometimes more convenient, log-likelihood, log L, which was a sum of independent, identically distributed random variables, which, however, do not have mean log 1 = 0. (a) Verify that the last claim is correct, by proving the more general statement, namely that, if Y is a non-negative random variable with finite mean, then E(log Y) log(EY). (b) Prove that, in fact, there is strict inequality: E(log Y) < log(EY), unless Y is degenerate. (c) Review the proof of Jensen's inequality, Theorem 5.1. Generalize with a glimpse on (b).arrow_forward2. Derive the component transformation equations for tensors shown be- low where [C] = [BA] is the direction cosine matrix from frame A to B. B[T] = [C]^[T][C]T 3. The transport theorem for vectors shows that the time derivative can be constructed from two parts: the first is an explicit frame-dependent change of the vector whereas the second is an active rotational change of the vector. The same holds true for tensors. Starting from the previous result, derive a version of transport theorem for tensors. [C] (^[T])[C] = dt d B dt B [T] + [WB/A]B[T] – TWB/A] (10 pt) (7pt)arrow_forward
- Use the graph of the function y = f (x) to find the value, if possible. f(x) 8 7 6 Q5 y 3 2 1 x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 -1 -2 -3 -4 -5 -6 -7 -8+ Olim f(z) x-1+ O Limit does not exist.arrow_forward3. Prove that, for any random variable X, the minimum of E(X - a)² is attained for a = EX. Provedarrow_forwardShade the areas givenarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY