Thinking Like an Engineer: An Active Learning Approach (4th Edition)
4th Edition
ISBN: 9780134639673
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9ICA
It is proposed to create a set of dimensionless numbers used to describe the phenomena of reaching the escape velocity necessary to orbit the Earth. A set of names is proposed, based on famous astronauts:
- The Gagarin number, after Yuri Gagarin, a Russian astronaut and the first human to achieve escape velocity and orbit the Earth in outer space;
- The Valentina number, after Valentina Tereshkova, a Russian astronaut who was the first female to orbit the Earth;
- The Shepard number, after Alan Shepard, the first American to orbit the Earth; and
- The Ride number, after Sally Ride, the first American woman in space.
To begin the analysis, assume the following variables are important:
g = Gravitational pull between planet and rocket | [=] meters per second squared [m/s2] |
nr = Amount of rocket fuel | [=]moles [mol] |
wp = Weight of planet | [=] pounds-force [lbf] |
d = Diameter of planet | [=]miles [mi] |
G = Newtonʼs gravitational constant | [=] newton meters squared per kilogram squared [N m2/kg2] |
v = Velocity of rocket | [=] miles per hour [mph or mi/h] |
η = Efficiency of the rocket engine | [=] unitless |
Determine a set of dimensionless groups using Rayleighʼs method.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am trying to plot an orbit in MATLAB. There is something wrong with my code because the final values I get are incorrect. The code is shown below. The correct values are in the image.
mu = 3.986*10^5; % Earth's gravitational parameter [km^3/s^2]
% Transforming orbital elements to cartesian coordinate system for LEOa_1 = 6782.99;e_1 = 0.000685539;inc_1 = 51.64;v_1 = 5;argp_1 = 30;raan_1 = 10;
[x_1, y_1, z_1, vx_1, vy_1, vz_1] = kep2cart(a_1, e_1, inc_1, raan_1, ... argp_1, v_1);
Y_1 = [x_1, y_1, z_1, vx_1, vy_1, vz_1];
% time_span for two revolutions (depends on the orbit)t1 = [0 (180*60)];
% Setting tolerancesoptions = odeset('RelTol',1e-12,'AbsTol',1e-12);
% Using ODE45 to numerically integrate for LEO[t_1, state_1] = ode45(@OrbitProp, t1, Y_1, options);
function dYdt = OrbitProp(t, Y)
mu = 3.986*10^5; % Earth's gravitational parameter [km^3/s^2]
% State Vector
x = Y(1); % [km]
y = Y(2); % [km]
z = Y(3); % [km]
vx = Y(4);…
Pressure drop AP depends on four variables: the diameter of the pipe D, the density of the fluid p, the
kinematic viscosity of the fluid v and the mean velocity v. Applying Buckinham's Pi Theorem, a
dimensionless pi-group can be identified using the following power product: [AP] = [D]ª[p]b[v][v]ª.
Which of the following statements in term of [T] is correct?
Select one:
O
[T]: -2 = -c-d
[T]: -1 = -c-d
[T]: -2 = -c-2*d
[T]: -2 = -2*c-d
[T]: -2=-c+d
3. Consider the following equation. All three of the terms in parentheses are dimensionless groups.
Because kc is difficult to determine directly, the other variables are measured and kc is calculated
from the given equation.
26
THERMODYNAMICS 1
MODULE 1
FUNDAMENTAL CONCEPTS
]3 [ _d>vp_jo8
p DAB
kc D
= 0.023 [H
DAB
What is the estimated value of kc? What are the units of kc? Show your work.
The following values were measured:
D = 8.0 mm, DAB = 0.475 cm²/s, µ = 1.12 x 103 N-s/m², p = 1.00 x 10-³ g/cm³, v = 15.0 m/s.
Chapter 9 Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Ch. 9.1 - The heat loss (Q/t, in units of joules per second...Ch. 9.2 - A simple expression for the velocity of molecules...Ch. 9.2 - What are the dimensions of the value 6 in the...Ch. 9.4 - The Euler number is a function of the pressure...Ch. 9 - Complete the following table. Dimensions ...Ch. 9 - Complete the following table. Dimensions ...Ch. 9 - Calculate the numerical value of each of the...Ch. 9 - Calculate the numerical value of each of the...Ch. 9 - A fluid with a specific gravity of 0.91 and a...Ch. 9 - Brine, with a density of 1.25 grams per cubic...
Ch. 9 - When a simple turbine is used for mixing, the...Ch. 9 - History suggests that Newton developed his idea...Ch. 9 - It is proposed to create a set of dimensionless...Ch. 9 - 1. While researching fluid dynamics, you come...Ch. 9 - 2. While researching fluid dynamics, you came...Ch. 9 - 3. While researching fluid dynamics, you come...Ch. 9 - 4. The Arrhenius number (Ar) is the dimensionless...Ch. 9 - 5. The Biot number (Bi) is the dimensionless...Ch. 9 - 6. A biodegradable fuel having a specific gravity...Ch. 9 - 7. A sludge mixture having a specific gravity of...Ch. 9 - 8. Water (specific gravity = 1.02; viscosity =...Ch. 9 - 9. We have been asked to determine a set of...Ch. 9 - 10. The Peclet number is used in heat transfer in...Ch. 9 - 11. When a fluid flows slowly across a flat plate...Ch. 9 - 12. In modeling the flow of liquid in a piping...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Suppose the registers 0x4 and 0x5 in the Vole contain the bit patterns 0x3A and 0xC8, respectively. What bit pa...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
The switch shown in Fig. P 7.4 has been open for a long time before closing at t = 0.
Figure P7.4
Find io(0−),...
Electric Circuits. (11th Edition)
3.3 It is known that a vertical force of 200 lb is required to remove the nail at C from the board. As the nail...
Vector Mechanics for Engineers: Statics
Big data Big data describes datasets with huge volumes that are beyond the ability of typical database manageme...
Management Information Systems: Managing The Digital Firm (16th Edition)
What is the advantage of using different types of cursors?
Database Concepts (8th Edition)
12. When a fluid flows around an object, it creates a force, called the drag force, that pulls on the object. T...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please do this carefully.arrow_forwardPlease answer ASAP, Please. Thank you very mucharrow_forwardA constant volume gas thermometer is used to determine the temperature of an unknown fluid. Pressure data for thermometer in the unknown bath (P) and a Triple Point Cell (P) are given below. P[Torr] 100.0 P [Torr] 127.9 200.0 256.5 300.0 385.8 400.0 516.0 What is the temperature of the unknown fluid bath? explain and show all work please and write clearlyarrow_forward
- Please answer in detail.arrow_forwardThe gravitational constant g is 9.807 m/s2 at sea level, but it decreases as you go up in elevation. A useful equation for this decrease in g is g = a – bz, where z is the elevation above sea level, a = 9.807 m/s2, and b = 3.32 × 10–6 1/s2. An astronaut “weighs” 80.0 kg at sea level. [Technically this means that his/her mass is 80.0 kg.] Calculate this person’s weight in N while floating around in the International Space Station (z = 354 km). If the Space Station were to suddenly stop in its orbit, what gravitational acceleration would the astronaut feel immediately after the satellite stopped moving? In light of your answer, explain why astronauts on the Space Station feel “weightless.”arrow_forwardQl: The viscosity in industrial measurement continue to use the CGS system of Lunits, since centimeters and grams vield convenient numbers for many fluids. The absolute viscosity () unit is the poise, I poise = 1 gtem. s). The kinematic viscosity (v) unit is the stohes, I stokes = 1 em /s. Water at 20C has u = 001 poise and also V= 0.01 stokes. Express these resalts in (a) SI and (h) BG tanits.arrow_forward
- The gravitational constant g is 9.807 m/s² at sea level, but it decreases as you go up in elevation. A useful equation for this decrease In g is g= a - bz, where z is the elevation above sea level, a = 9.807 m/s², and b=3.32 x 10-61/s². An astronaut "weighs" 80.0 kg at sea level. [Technically this means that his/her mass is 80.0 kg.] Calculate this person's weight in N while floating around in the International Space Station (z=325 km). If the Space Station were to suddenly stop in its orbit, what gravitational acceleration would the astronaut feel Immediately after the satellite stopped moving? The person's weight in N while floating around in the International Space Station Is The astronaut feels a gravitational acceleration of m/s² N.arrow_forwardTime left 1:5 An ideal gas has its pressure (1.8) times and mass density (2.2) times increased. If the initial temperature is 265.4 °C, what is the final temperature in °C, and use one number after the decimal (xxx.x)? Answer: NEXT PAGE pe here to search DELLarrow_forward10 The Reynolds number is a dimensionless quantity used in calculations of fluid flow in pipes. The Reynolds nummber is defined as D,Vp NRe where D; is the inside diameter of the pipe, V is the average velocity of the fluid in the pipe, p is the fluid density and u is the absolute viscosity of the fluid. For flow in pipes, a Reynolds number of less than 2000 indicates that the flow is laminar, while a value of greater than 10,000 indicates that the flow is turbulent. For a pipe diameter of 5 cm, and fluid of density 1 g/cm and viscosity of 1 centipoise, find the minimum velocity that results in turbulent flow.arrow_forward
- . I am planning to perform some volume-flow rate measurements in the Fluid Mechanics Laboratory. For this, I need a volumetric measuring tank (graduated cylinder) and a stopwatch. I considered the volume of the measured tank as 15 gallons and a stopwatch with reaction time as 1/10th of a second (though resolution of 1/1000th of a second). What is the volume flow rate if it takes 5 minutes to fill a 15-gallon of tank? Determine the smallest division to be on the tank in order to estimate the volume flow rate within an accuracy of ± 0.05 gpm.arrow_forwardThe diagram below, fig 1, shows the results of a viscosity v’s temperature for ayellow ink.The company datasheet extract, fig 2, shows the manufacturers specification.With your knowledge of viscosity v’s temperature and the information in the datasheet explain some reasons for the discrepanciesarrow_forwardThe power P required for operating a pump depends on the diameter of the pump D, the pressure rise Ap across the pump, the fluid density p, the fluid viscosity and the Theorem, and D, Q and p as the repeating variables, the dimensionless group associated with μ is given by volume flow rate Q through the pump. Using Buckingham's μDªQbpº. Determine the values of a, b and c. 1. [0.99, 1.01 2. [-1.01, 0.99 3. [-1.01, -0.99 a= b = C=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY