ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
7th Edition
ISBN: 9781319403959
Author: ATKINS
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 9D.4E

(a)

Interpretation Introduction

Interpretation:

The orbital energy level diagram and the number of unpaired electrons in [Zn(OH2)6]2+ complex have to be given.

(a)

Expert Solution
Check Mark

Answer to Problem 9D.4E

There is no unpaired electron in [Zn(OH2)6]2+ complex.

Explanation of Solution

The oxidation number of zinc in [Zn(OH2)6]2+ complex is +3 and the electronic configuration of Zn2+ is [Ar]3d10 and it is an octahedral complex.  In an octahedral complex there are six ligands attached to the central transition metal. The d-orbital splits into two different levels.  The bottom three energy levels are dxy,dxz,dyz named as (t2g) and the two upper levels are dx2-y2&dz2 named as eg set.

The orbital energy level diagram for d10 configuration is,

ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM, Chapter 9, Problem 9D.4E , additional homework tip  1

Since, water acts as a strong ligand in [Zn(OH2)6]2+ complex all the d electrons are paired up in the lower energy levels and there is no unpaired electron.

(b)

Interpretation Introduction

Interpretation:

The orbital energy level diagram and the number of unpaired electrons in [Co(Cl)4]2- complex have to be given.

(b)

Expert Solution
Check Mark

Explanation of Solution

The oxidation number of cobalt in [Co(Cl)4]2- complex is +2 and the electronic configuration of Co2+ is [Ar]3d7 and it is a tetrahedral complex.  In a tetrahedral complex there are four ligands attached to the central metal.  The d-orbitals split into two different energy levels.  The two three consist of dxy,dxz,dyz and the bottom two consist of dx2-y2&dz2 the reason for this id due to the poor orbital overlap between the metal and the ligand orbitals

The orbital energy level diagram for d7 configuration is,

ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM, Chapter 9, Problem 9D.4E , additional homework tip  2

Since, chloride ion is a weak ligand the electrons are filled according to the Hund’s rule in the d-orbitals and the number of unpaired electron in cobalt complex is three.

(c)

Interpretation Introduction

Interpretation:

The orbital energy level diagram and the number of unpaired electrons in [Co(CN)6]3- complex have to be given.

(c)

Expert Solution
Check Mark

Explanation of Solution

The oxidation number of iron in [Co(CN)6]3- complex is +3 and the electronic configuration of Co3+ is [Ar]3d6 and it is an octahedral complex.  In an octahedral complex there are six ligands attached to the central transition metal.  The d-orbital splits into two different levels.  The bottom three energy levels are dxy,dxz,dyz named as (t2g) and the two upper levels are dx2-y2&dz2 named as eg set.

The orbital energy level diagram for d6 configuration is,

ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM, Chapter 9, Problem 9D.4E , additional homework tip  3

Since, cyanide acts as a strong ligand in [Co(CN)6]3- complex all the d electrons are paired up in the lower energy levels and there is no unpaired electron.

(d)

Interpretation Introduction

Interpretation:

The orbital energy level diagram and the number of unpaired electrons in [Co(F)6]3- complex have to be given.

(d)

Expert Solution
Check Mark

Explanation of Solution

The oxidation number of iron in [Co(F)6]3- complex is +3 and the electronic configuration of Co3+ is [Ar]3d6 and it is an octahedral complex.  In an octahedral complex there are six ligands attached to the central transition metal.  The d-orbital splits into two different levels.  The bottom three energy levels are dxy,dxz,dyz named as (t2g) and the two upper levels are dx2-y2&dz2 named as eg set.

The orbital energy level diagram for d6 configuration is,

ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM, Chapter 9, Problem 9D.4E , additional homework tip  4

Since, fluoride ion is a weak ligand the electrons are filled according to the Hund’s rule in the d-orbitals and the number of unpaired electron in cobalt complex is four.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
None
Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v V
Experiment:  Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.

Chapter 9 Solutions

ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM

Ch. 9 - Prob. 9A.9ECh. 9 - Prob. 9A.10ECh. 9 - Prob. 9A.11ECh. 9 - Prob. 9A.12ECh. 9 - Prob. 9A.13ECh. 9 - Prob. 9A.14ECh. 9 - Prob. 9B.1ASTCh. 9 - Prob. 9B.1BSTCh. 9 - Prob. 9B.2ASTCh. 9 - Prob. 9B.2BSTCh. 9 - Prob. 9B.1ECh. 9 - Prob. 9B.2ECh. 9 - Prob. 9B.3ECh. 9 - Prob. 9B.4ECh. 9 - Prob. 9B.5ECh. 9 - Prob. 9B.6ECh. 9 - Prob. 9B.7ECh. 9 - Prob. 9B.8ECh. 9 - Prob. 9B.9ECh. 9 - Prob. 9B.10ECh. 9 - Prob. 9B.11ECh. 9 - Prob. 9B.12ECh. 9 - Prob. 9B.13ECh. 9 - Prob. 9B.14ECh. 9 - Prob. 9B.15ECh. 9 - Prob. 9B.16ECh. 9 - Prob. 9C.1ASTCh. 9 - Prob. 9C.1BSTCh. 9 - Prob. 9C.2ASTCh. 9 - Prob. 9C.2BSTCh. 9 - Prob. 9C.3ASTCh. 9 - Prob. 9C.3BSTCh. 9 - Prob. 9C.4ASTCh. 9 - Prob. 9C.4BSTCh. 9 - Prob. 9C.1ECh. 9 - Prob. 9C.2ECh. 9 - Prob. 9C.3ECh. 9 - Prob. 9C.4ECh. 9 - Prob. 9C.5ECh. 9 - Prob. 9C.6ECh. 9 - Prob. 9C.7ECh. 9 - Prob. 9C.8ECh. 9 - Prob. 9C.9ECh. 9 - Prob. 9C.10ECh. 9 - Prob. 9C.11ECh. 9 - Prob. 9C.12ECh. 9 - Prob. 9C.13ECh. 9 - Prob. 9C.14ECh. 9 - Prob. 9C.15ECh. 9 - Prob. 9C.16ECh. 9 - Prob. 9C.17ECh. 9 - Prob. 9C.18ECh. 9 - Prob. 9C.19ECh. 9 - Prob. 9C.20ECh. 9 - Prob. 9D.1ASTCh. 9 - Prob. 9D.1BSTCh. 9 - Prob. 9D.2ASTCh. 9 - Prob. 9D.2BSTCh. 9 - Prob. 9D.3ASTCh. 9 - Prob. 9D.3BSTCh. 9 - Prob. 9D.4ASTCh. 9 - Prob. 9D.4BSTCh. 9 - Prob. 9D.1ECh. 9 - Prob. 9D.2ECh. 9 - Prob. 9D.3ECh. 9 - Prob. 9D.4ECh. 9 - Prob. 9D.5ECh. 9 - Prob. 9D.6ECh. 9 - Prob. 9D.7ECh. 9 - Prob. 9D.8ECh. 9 - Prob. 9D.9ECh. 9 - Prob. 9D.10ECh. 9 - Prob. 9D.11ECh. 9 - Prob. 9D.12ECh. 9 - Prob. 9D.13ECh. 9 - Prob. 9D.14ECh. 9 - Prob. 9D.15ECh. 9 - Prob. 9D.16ECh. 9 - Prob. 9D.17ECh. 9 - Prob. 9D.18ECh. 9 - Prob. 9D.19ECh. 9 - Prob. 9D.20ECh. 9 - Prob. 9D.21ECh. 9 - Prob. 9D.22ECh. 9 - Prob. 9D.23ECh. 9 - Prob. 9D.24ECh. 9 - Prob. 9D.25ECh. 9 - Prob. 9D.26ECh. 9 - Prob. 9D.27ECh. 9 - Prob. 9D.28ECh. 9 - Prob. 9D.29ECh. 9 - Prob. 9D.30ECh. 9 - Prob. 9D.31ECh. 9 - Prob. 9D.32ECh. 9 - Prob. 9D.33ECh. 9 - Prob. 9D.34ECh. 9 - Prob. 9.1ECh. 9 - Prob. 9.2ECh. 9 - Prob. 9.3ECh. 9 - Prob. 9.4ECh. 9 - Prob. 9.5ECh. 9 - Prob. 9.6ECh. 9 - Prob. 9.7ECh. 9 - Prob. 9.8ECh. 9 - Prob. 9.9ECh. 9 - Prob. 9.10ECh. 9 - Prob. 9.11ECh. 9 - Prob. 9.12ECh. 9 - Prob. 9.13ECh. 9 - Prob. 9.14ECh. 9 - Prob. 9.15ECh. 9 - Prob. 9.16ECh. 9 - Prob. 9.17ECh. 9 - Prob. 9.18ECh. 9 - Prob. 9.19ECh. 9 - Prob. 9.20ECh. 9 - Prob. 9.21ECh. 9 - Prob. 9.23ECh. 9 - Prob. 9.25E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning