![EBK PHYSICS FOR SCIENTISTS AND ENGINEER](https://www.bartleby.com/isbn_cover_images/8220100461262/8220100461262_largeCoverImage.jpg)
Review. A light spring of force constant 3.85 N/m is compressed by 8.00 cm and held between a 0.250-kg block on the left and a 0.500-kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is (a) 0, (b) 0.100, and (c) 0.462. Assume the coefficient of static friction is greater than the coefficient of kinetic friction in every case.
(a)
![Check Mark](/static/check-mark.png)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is 0.
Answer to Problem 9.87AP
The maximum velocity of each block is
Explanation of Solution
The force constant is
Write the expression to calculate the force by the spring.
Here,
Substitute
Write the expression of conservation of energy.
Here,
Substitute
Write the expression of conservation of linear momentum.
Substitute
Substitute
Conclusion:
Substitute
Thus, the maximum velocity of each block is
(b)
![Check Mark](/static/check-mark.png)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is
Answer to Problem 9.87AP
The maximum velocity of each block is
Explanation of Solution
Write the expression to calculate the normal force on the lighter block.
Here,
Substitute
Write the expression to calculate the limiting frictional force.
Here,
Substitute
The spring force,
Since the mass of right block is double than the left block therefore the limiting force of friction is also two times the left one i.e.
The limiting frictional force of right clock is greater than the spring force so it will not move.
The left will continue to move as long as the spring force is large than the friction force.
Write the expression to calculate the limiting frictional force.
Here,
Substitute
Write the expression of conservation of energy.
Substitute
The negative sign indicates that the direction of motion of the lighter block is toward negative x axis.
The velocity of the heavier block is zero.
Conclusion:
Therefore, the maximum velocity of each block is
(c)
![Check Mark](/static/check-mark.png)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is
Answer to Problem 9.87AP
The velocity of both blocks is 0.
Explanation of Solution
Write the expression to calculate the limiting frictional force of left block.
Substitute
Write the expression to calculate the limiting frictional force of right block.
Substitute
The spring force is less than the limiting frictional force of both the blocks so the blocks will not move.
Conclusion:
Therefore, the velocity of both blocks is 0.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt plsarrow_forward4.4 A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0°, and the man pulls upward with a force F whose direction makes an angle of 30.0° 75.0° with the ramp (Fig. E4.4). (a) How large a force F is necessary for the component Fx parallel to the ramp to be 90.0 N? (b) How large will the component Fy perpendicular to the ramp be then? Figure E4.4 30.0 20.0°arrow_forward
- 1. * A projectile is shot from a launcher at an angle e, with an initial velocity magnitude v., from a point even with a tabletop. The projectile lands on the tabletop a horizontal distance R (the "range") away from where it left the launcher. Set this up as a formal problem, and solve for vo (i.e., determine an expression for Vo in terms of only R, 0., and g). Your final equation will be called Equation 1.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, o,y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0., y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forward4.56 ... CALC An object of mass m is at rest in equilibrium at the origin. At t = 0 a new force F(t) is applied that has components Fx(t) = k₁ + k₂y Fy(t) = k3t where k₁, k2, and k3 are constants. Calculate the position (1) and veloc- ity (t) vectors as functions of time.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)