Review. There are (one can say) three coequal theories of motion for a single particle: Newton’s second law, stating that the total force on the particle causes its acceleration; the work–kinetic energy theorem, stating that the total work on the particle causes its change in kinetic energy; and the impulse–momentum theorem, stating that the total impulse on the panicle causes its change in momentum. In this problem, you compare predictions of the three theories in one particular case. A 3.00-kg object has velocity
(a)
The final velocity of the object.
Answer to Problem 9.90AP
The final velocity of the object is
Explanation of Solution
The mass of the object is
Write the expression of impulse momentum equation.
Here,
Conclusion:
Substitute
Thus, the final velocity of the object is
(b)
The acceleration of the object.
Answer to Problem 9.90AP
The acceleration of the object is
Explanation of Solution
Write the expression to calculate the acceleration of the object.
Here,
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(c)
The acceleration of the object.
Answer to Problem 9.90AP
The acceleration of the object is
Explanation of Solution
Write the expression to calculate the acceleration of the object.
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(d)
The vector displacement of the object.
Answer to Problem 9.90AP
The vector displacement of the object is
Explanation of Solution
Write the expression to calculate the vector displacement of the object.
Here,
Substitute
Thus, the vector displacement of the object is
Conclusion:
Therefore, the vector displacement of the object is
(e)
The work done on the object.
Answer to Problem 9.90AP
The work done on the object is
Explanation of Solution
Write the expression to calculate the work done on the object.
Here,
Substitute
Thus, the work done on the object is
Conclusion:
Therefore, the work done on the object is
(f)
The final kinetic energy of the object.
Answer to Problem 9.90AP
The final kinetic energy of the object is
Explanation of Solution
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(g)
The final kinetic energy of the object.
Answer to Problem 9.90AP
The final kinetic energy of the object is
Explanation of Solution
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(h)
The result of comparison of the answers in part (b), (c) and (f), (g).
Answer to Problem 9.90AP
The value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Explanation of Solution
Write the expression to calculate the acceleration of the object.
Write the expression to calculate the acceleration of the object.
According to the second law of motion,
Substitute
The equation (2) and (8) are same therefore, the value of acceleration in part (b) and (c) are same.
Write the expression to calculate the work done on the object,
Substitute
The equation (10) and (6) are same.
Thus, the value of kinetic energy in part (f) and (g) are same.
Conclusion:
Therefore, the value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning