Fluid Mechanics, 8 Ed
Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9.7P
To determine

(a)

The flow.

Expert Solution
Check Mark

Answer to Problem 9.7P

The flow is isentropic, and the stagnation properties are:

To=605K,

po=319kPa, and

ρo=1.805kg/m3

All the above values are constant in the flow from section 1 to section 2.

Explanation of Solution

Given Information:

A1=20cm2p1=300kPaρ1=1.75kg/m3V1=122.5m/sρ2=0.266kg/m3T2=281K

Calculation:

The flow is isentropic, and the stagnation properties are:

To=605K,

po=319kPa, and

ρo=1.805kg/m3

All the above values are constant in the flow from section 1 to section 2.

To determine

(b)

The mass flow at section 2.

Expert Solution
Check Mark

Answer to Problem 9.7P

The required value of the mass flow is 0.0429kg/s.

Explanation of Solution

Given information:

A1=20cm2p1=300kPaρ1=1.75kg/m3V1=122.5m/sρ2=0.266kg/m3T2=281K

Formula used:

m1=m2=ρ1A1V1

Calculation:

We know that the mass flow should be constant:

m1=m2=ρ1A1V1(1.75kg/m3)(0.0020m2)(122.5m/s)0.0429kg/s.

To determine

(c)

The value of V2.

Expert Solution
Check Mark

Answer to Problem 9.7P

The required value of the V2is 806m/s

Explanation of Solution

Given Information:

A1=20cm2p1=300kPaρ1=1.75kg/m3V1=122.5m/sρ2=0.266kg/m3T2=281K

Formula used:

V2=mρ2A2

Calculation:

We know that; V2=mρ2A2 ;

Put the values in the above equation;

V2=mρ2A2=0.0429kg/s( 0.266kg/ m 3 )( 0.002 m 2 )806m/s

We know that, a2=(kRT2)1/2 ;

Put the values in the above equation;

a2=(kR T 2)1/2=[1.4( 287)( 281)]1/2366m/s

Therefore, the Mach number at section 2 is;

Ma2=V2/a2806/3362.40

So, the flow at section 2 is supersonic.

To determine

(d)

The value of p2.

Expert Solution
Check Mark

Answer to Problem 9.7P

The required value of the p2 is 21450Pa.

Explanation of Solution

Given Information:

A1=20cm2p1=300kPaρ1=1.75kg/m3V1=122.5m/sρ2=0.266kg/m3T2=281K

Formula used:

p2=ρ2RT2

Calculation:

We know that, p2=ρ2RT2 ;

Put the values in the above equation;

p2=ρ2RT2=(0.266kg/m3)(287m2/s2K)(281K)21450Pa

Again,

T1=p1Rρ1( 300000Pa)( 287 m 2 / s 2 K)( 1.75kg/ m 3 )597K.

To determine

(e)

The difference of s2-s1.

Expert Solution
Check Mark

Answer to Problem 9.7P

The required value is 0J/kgK

Explanation of Solution

Given Information:

A1=20cm2p1=300kPaρ1=1.75kg/m3V1=122.5m/sρ2=0.266kg/m3T2=281K

Formula used:

s2s1=cpln(T2T1)Rln(p2p1)

Calculation:

We know the equation, (9.8) ;

s2s1=cpln(T2T1)Rln(p2p1)

Put the values in the above equation;

s2s1=cpln( T 2 T 1 )Rln( p 2 p 1 )=1005ln( 281 597)287ln( 21450 300000)757+7570J/kgK.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The fallowing question is from a reeds book on applied heat i am studying. Although the answer is provided, im struggling to understand the whole answer and the formulas and the steps theyre using. Also where some ov the values such as Hg and Hf come from in part i for example. Please explain step per step in detail thanks   In an NH, refrigerator, the ammonia leaves the evaporatorand enters the cornpressor as dry saturated vapour at 2.68 bar,it leaves the compressor and enters the condenser at 8.57 bar with50" of superheat. it is condensed at constant pressure and leavesthe condenser as saturated liquid. If the rate of flow of the refrigerantthrough the circuit is 0.45 kglmin calculate (i) the compressorpower, (ii) the heat rejected to the condenser cooling water in kJ/s,an (iii) the refrigerating effect in kJ/s. From tables page 12, NH,:2.68 bar, hg= 1430.58.57 bar, hf = 275.1 h supht 50" = 1597.2Mass flow of refrigerant--- - - 0.0075 kgls 60Enthalpy gain per kg of refrigerant in…
state the formulas for calculating work done by gas
Exercises Find the solution of the following Differential Equations 1) y" + y = 3x² 3) "+2y+3y=27x 5) y"+y=6sin(x) 7) y"+4y+4y = 18 cosh(x) 9) (4)-5y"+4y = 10 cos(x) 11) y"+y=x²+x 13) y"-2y+y=e* 15) y+2y"-y'-2y=1-4x³ 2) y"+2y' + y = x² 4) "+y=-30 sin(4x) 6) y"+4y+3y=sin(x)+2 cos(x) 8) y"-2y+2y= 2e* cos(x) 10) y+y-2y=3e* 12) y"-y=e* 14) y"+y+y=x+4x³ +12x² 16) y"-2y+2y=2e* cos(x)

Chapter 9 Solutions

Fluid Mechanics, 8 Ed

Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Consider steam at 500 K and 200 kPa. Estimate its...Ch. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - P9.21 N?O expands isentropically through a duct...Ch. 9 - Given the pitot stagnation temperature and...Ch. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - P9.27 A pitot tube, mounted on an airplane flying...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.32PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - P9.36 An air tank of volume 1.5 m3 is initially at...Ch. 9 - Make an exact control volume analysis of the...Ch. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Prob. 9.42PCh. 9 - Prob. 9.43PCh. 9 - Prob. 9.44PCh. 9 - It is desired to have an isentropic airflow...Ch. 9 - Prob. 9.46PCh. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - Prob. 9.58PCh. 9 - Prob. 9.59PCh. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.62PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Prob. 9.65PCh. 9 - Prob. 9.66PCh. 9 - Prob. 9.67PCh. 9 - Prob. 9.68PCh. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - A converging-diverging nozzle has a throat area of...Ch. 9 - Prob. 9.72PCh. 9 - Prob. 9.73PCh. 9 - Prob. 9.74PCh. 9 - Prob. 9.75PCh. 9 - Prob. 9.76PCh. 9 - P9.77 A perfect gas (not air) expands...Ch. 9 - Prob. 9.78PCh. 9 - P9.79 A large tank, at 400 kPa and 450 K, supplies...Ch. 9 - Prob. 9.80PCh. 9 - Prob. 9.81PCh. 9 - Prob. 9.82PCh. 9 - 1*9.83 When operating at design conditions (smooth...Ch. 9 - Prob. 9.84PCh. 9 - A typical carbon dioxide tank for a paintball gun...Ch. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - Prob. 9.88PCh. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - Prob. 9.93PCh. 9 - Prob. 9.94PCh. 9 - Prob. 9.95PCh. 9 - Prob. 9.96PCh. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Prob. 9.99PCh. 9 - Prob. 9.100PCh. 9 - Prob. 9.101PCh. 9 - Prob. 9.102PCh. 9 - Prob. 9.103PCh. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Prob. 9.106PCh. 9 - Prob. 9.107PCh. 9 - Prob. 9.108PCh. 9 - P9.109 A jet engine at 7000-m altitude takes in 45...Ch. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.112PCh. 9 - Prob. 9.113PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - P9.117 A tiny scratch in the side of a supersonic...Ch. 9 - Prob. 9.118PCh. 9 - Prob. 9.119PCh. 9 - Prob. 9.120PCh. 9 - Prob. 9.121PCh. 9 - Prob. 9.122PCh. 9 - Prob. 9.123PCh. 9 - Prob. 9.124PCh. 9 - Prob. 9.125PCh. 9 - Prob. 9.126PCh. 9 - Prob. 9.127PCh. 9 - Prob. 9.128PCh. 9 - Prob. 9.129PCh. 9 - Prob. 9.130PCh. 9 - Prob. 9.131PCh. 9 - Prob. 9.132PCh. 9 - Prob. 9.133PCh. 9 - P9.134 When an oblique shock strikes a solid wall,...Ch. 9 - Prob. 9.135PCh. 9 - Prob. 9.136PCh. 9 - Prob. 9.137PCh. 9 - Prob. 9.138PCh. 9 - Prob. 9.139PCh. 9 - Prob. 9.140PCh. 9 - Prob. 9.141PCh. 9 - Prob. 9.142PCh. 9 - Prob. 9.143PCh. 9 - Prob. 9.144PCh. 9 - Prob. 9.145PCh. 9 - Prob. 9.146PCh. 9 - Prob. 9.147PCh. 9 - Prob. 9.148PCh. 9 - Prob. 9.149PCh. 9 - Prob. 9.150PCh. 9 - Prob. 9.151PCh. 9 - Prob. 9.152PCh. 9 - Prob. 9.153PCh. 9 - Prob. 9.154PCh. 9 - Prob. 9.155PCh. 9 - Prob. 9.156PCh. 9 - The Ackeret airfoil theory of Eq. (9.104) is meant...Ch. 9 - Prob. 9.1WPCh. 9 - Prob. 9.2WPCh. 9 - Prob. 9.3WPCh. 9 - Prob. 9.4WPCh. 9 - Prob. 9.5WPCh. 9 - Prob. 9.6WPCh. 9 - Prob. 9.7WPCh. 9 - Prob. 9.8WPCh. 9 - FE9.1 For steady isentropic flow, if the absolute...Ch. 9 - FE9.2 For steady isentropic flow, if the density...Ch. 9 - Prob. 9.3FEEPCh. 9 - Prob. 9.4FEEPCh. 9 - Prob. 9.5FEEPCh. 9 - Prob. 9.6FEEPCh. 9 - Prob. 9.7FEEPCh. 9 - Prob. 9.8FEEPCh. 9 - Prob. 9.9FEEPCh. 9 - Prob. 9.10FEEPCh. 9 - Prob. 9.1CPCh. 9 - Prob. 9.2CPCh. 9 - Prob. 9.3CPCh. 9 - Prob. 9.4CPCh. 9 - Prob. 9.5CPCh. 9 - Prob. 9.6CPCh. 9 - Professor Gordon Holloway and his student, Jason...Ch. 9 - Prob. 9.8CPCh. 9 - Prob. 9.1DPCh. 9 - Prob. 9.2DP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License