Fluid Mechanics, 8 Ed
Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
Question
Book Icon
Chapter 9, Problem 9.31P
To determine

(a)

The Mach number at point 2.

Expert Solution
Check Mark

Answer to Problem 9.31P

Ma2=0.938

Explanation of Solution

Given information:

At section 1,

p1=35lbf/in2T1=200°FV1=400ft/s

At section 2,

p2=18lbf/in2V2=1100ft/s

Speed of sound is defined as,

a=kRT

Where,

R - Gas constant

R=1716ft2/s2.°R

k - Specific heat capacity

The Mach number is defined as,

Ma=Va

Where,

V - Air velocity

For adiabatic flow, the stagnation temperature is defined as,

T0=T+V22Cp

Where,

Cp=6009ft2/s2.°R

Calculation:

Convert,

T1=200°F=659.67°R

Calculate the stagnation temperature,

T0=T1+V122Cp=659.67°R+( 400ft/s)22(6009ft2/s2.°R)=672.98°R

Calculate the temperature at point 2,

T0=T2+V222Cp

Substitute for known values,

672.98°R=T2+ ( 1100ft/s )22( 6009f t 2 / s 2 .°R)T2=572.29°R

Calculate the speed of sound,

a=kRT2=1.4(1716ft2/s2.°R)(572.29°R)=1172.54ft/s

Calculate the Mach number at section 2,

Ma2=V2a=1100ft/s1172.54ft/s=0.938

Conclusion:

The Mach number at section 2 is equal to Ma2=0.938.

To determine

(b)

Calculate Umax.

Expert Solution
Check Mark

Answer to Problem 9.31P

Umax=2843.92ft/s

Explanation of Solution

Given information:

At section 1,

p1=35lbf/in2T1=200°FV1=400ft/s

At section 2,

p2=18lbf/in2V2=1100ft/s

The maximum value of velocity is defined as,

Umax=2CpT0

Where,

T0 - Stagnation temperature

Cp=6009ft2/s2.°R Calculation:

According to sub-part a,

The stagnation temperature is equal to,

T0=672.98°R

Calculate the maximum value of velocity,

Umax=2CpT0=2(6009ft2/s2.°R)(672.98°R)=2843.92ft/s

Conclusion:

The maximum value of velocity is equal to Umax=2843.92ft/s.

To determine

(c)

Calculate p02p01.

Expert Solution
Check Mark

Answer to Problem 9.31P

p02p01=0.845

Explanation of Solution

Given information:

At section 1,

p1=35lbf/in2T1=200°FV1=400ft/s

At section 2,

p2=18lbf/in2V2=1100ft/s

The pressure ratio is defined as,

p0p=[1+12(k1)Ma2]k/k1

Where,

k=1.4

Speed of sound is defined as,

a=kRT

Where,

R - Gas constant

R=1716ft2/s2.°R

k - Specific heat capacity

The Mach number is defined as,

Ma=Va

Where,

V - Air velocity

Calculation:

Calculate the Mach number at section 1,

Ma1=V1a=V1kRT1=400ft/s1.4( 1716f t 2 / s 2 .°R)( 659.67°R)=0.318

Convert,

p1=35lbf/in2=5040lbf/ft2

Calculate the stagnation pressure at section 1,

p01p1=[1+12(k1)Ma12]k/k1

Substitute for known values,

p015040lbf/ft2=[1+12(1.41)( 0.318)2]1.4/1.41

Solve for stagnation pressure at section 1,

p01=5405.87lbf/ft2

Convert,

p2=18lbf/in2=2592lbf/ft2

Calculate the stagnation pressure at section 1,

p02p2=[1+12(k1)Ma22]k/k1

Substitute for known values,

p022592lbf/ft2=[1+12(1.41)( 0.938)2]1.4/1.41

Solve for stagnation pressure at section 2,

p02=4571.10lbf/ft2

Therefore,

p02p01=4571.10lbf/ft25405.87lbf/ft2=0.845

Conclusion:

The stagnation pressure ration is equal to p02p01=0.845.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 2: Determine the components of the reaction at point B (Please use paper sheet + FBD ,don't use chatgpt) MECHANICAL ENGG
ARL040_AE_Kn_2of3... Dor Question 4. A two-throw crankshaft has masses distributed as shown: RAH 90 rpm A TRAV B Re Rev M₁ = 15kg; M₂ = 12kg L = 950mm; 1, 350mm; 1₁ = 600mm; 0₁ = 90°; 02=0°; r₁ = 300mm; r250mm The crankshaft is to be balanced by attaching masses at radii of 300 mm and rotating in planes 150 mm outside the planes of number one and number two cranks. Determine the magnitude and angular position of the balance masses. Answer 4.
FEA

Chapter 9 Solutions

Fluid Mechanics, 8 Ed

Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Consider steam at 500 K and 200 kPa. Estimate its...Ch. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - P9.21 N?O expands isentropically through a duct...Ch. 9 - Given the pitot stagnation temperature and...Ch. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - P9.27 A pitot tube, mounted on an airplane flying...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.32PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - P9.36 An air tank of volume 1.5 m3 is initially at...Ch. 9 - Make an exact control volume analysis of the...Ch. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Prob. 9.42PCh. 9 - Prob. 9.43PCh. 9 - Prob. 9.44PCh. 9 - It is desired to have an isentropic airflow...Ch. 9 - Prob. 9.46PCh. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - Prob. 9.58PCh. 9 - Prob. 9.59PCh. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.62PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Prob. 9.65PCh. 9 - Prob. 9.66PCh. 9 - Prob. 9.67PCh. 9 - Prob. 9.68PCh. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - A converging-diverging nozzle has a throat area of...Ch. 9 - Prob. 9.72PCh. 9 - Prob. 9.73PCh. 9 - Prob. 9.74PCh. 9 - Prob. 9.75PCh. 9 - Prob. 9.76PCh. 9 - P9.77 A perfect gas (not air) expands...Ch. 9 - Prob. 9.78PCh. 9 - P9.79 A large tank, at 400 kPa and 450 K, supplies...Ch. 9 - Prob. 9.80PCh. 9 - Prob. 9.81PCh. 9 - Prob. 9.82PCh. 9 - 1*9.83 When operating at design conditions (smooth...Ch. 9 - Prob. 9.84PCh. 9 - A typical carbon dioxide tank for a paintball gun...Ch. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - Prob. 9.88PCh. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - Prob. 9.93PCh. 9 - Prob. 9.94PCh. 9 - Prob. 9.95PCh. 9 - Prob. 9.96PCh. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Prob. 9.99PCh. 9 - Prob. 9.100PCh. 9 - Prob. 9.101PCh. 9 - Prob. 9.102PCh. 9 - Prob. 9.103PCh. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Prob. 9.106PCh. 9 - Prob. 9.107PCh. 9 - Prob. 9.108PCh. 9 - P9.109 A jet engine at 7000-m altitude takes in 45...Ch. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.112PCh. 9 - Prob. 9.113PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - P9.117 A tiny scratch in the side of a supersonic...Ch. 9 - Prob. 9.118PCh. 9 - Prob. 9.119PCh. 9 - Prob. 9.120PCh. 9 - Prob. 9.121PCh. 9 - Prob. 9.122PCh. 9 - Prob. 9.123PCh. 9 - Prob. 9.124PCh. 9 - Prob. 9.125PCh. 9 - Prob. 9.126PCh. 9 - Prob. 9.127PCh. 9 - Prob. 9.128PCh. 9 - Prob. 9.129PCh. 9 - Prob. 9.130PCh. 9 - Prob. 9.131PCh. 9 - Prob. 9.132PCh. 9 - Prob. 9.133PCh. 9 - P9.134 When an oblique shock strikes a solid wall,...Ch. 9 - Prob. 9.135PCh. 9 - Prob. 9.136PCh. 9 - Prob. 9.137PCh. 9 - Prob. 9.138PCh. 9 - Prob. 9.139PCh. 9 - Prob. 9.140PCh. 9 - Prob. 9.141PCh. 9 - Prob. 9.142PCh. 9 - Prob. 9.143PCh. 9 - Prob. 9.144PCh. 9 - Prob. 9.145PCh. 9 - Prob. 9.146PCh. 9 - Prob. 9.147PCh. 9 - Prob. 9.148PCh. 9 - Prob. 9.149PCh. 9 - Prob. 9.150PCh. 9 - Prob. 9.151PCh. 9 - Prob. 9.152PCh. 9 - Prob. 9.153PCh. 9 - Prob. 9.154PCh. 9 - Prob. 9.155PCh. 9 - Prob. 9.156PCh. 9 - The Ackeret airfoil theory of Eq. (9.104) is meant...Ch. 9 - Prob. 9.1WPCh. 9 - Prob. 9.2WPCh. 9 - Prob. 9.3WPCh. 9 - Prob. 9.4WPCh. 9 - Prob. 9.5WPCh. 9 - Prob. 9.6WPCh. 9 - Prob. 9.7WPCh. 9 - Prob. 9.8WPCh. 9 - FE9.1 For steady isentropic flow, if the absolute...Ch. 9 - FE9.2 For steady isentropic flow, if the density...Ch. 9 - Prob. 9.3FEEPCh. 9 - Prob. 9.4FEEPCh. 9 - Prob. 9.5FEEPCh. 9 - Prob. 9.6FEEPCh. 9 - Prob. 9.7FEEPCh. 9 - Prob. 9.8FEEPCh. 9 - Prob. 9.9FEEPCh. 9 - Prob. 9.10FEEPCh. 9 - Prob. 9.1CPCh. 9 - Prob. 9.2CPCh. 9 - Prob. 9.3CPCh. 9 - Prob. 9.4CPCh. 9 - Prob. 9.5CPCh. 9 - Prob. 9.6CPCh. 9 - Professor Gordon Holloway and his student, Jason...Ch. 9 - Prob. 9.8CPCh. 9 - Prob. 9.1DPCh. 9 - Prob. 9.2DP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY