(a)
Interpretation:
The rate (SCF/h) at which the biogas produced in the digester should be calculated along with the total heating value (Btu/h) of the gas.
Concept introduction:
The total solid obtained is the product of amount of water that is converted to solid under water treatment process and the solid of the feed digester can be calculated as follows:
The total heating value is obtained as:
Total heating value for gas = Fuel flow rate × LHV
Where, LHV is lower heating value.
(b)
Interpretation:
The rate of heat transfer (Btu/h) between the hot water and the sludge should be calculated along with the volumetric flow rate (ft3/h) of the water passing through the heat exchanger.
Concept introduction:
The heat transfer between hot medium and the sludge is calculated as:
Here, h is the heat transfer coefficient and A is the sludge surface area while Tmedium and Tsludge are the temperature of hot water medium and the sludge respectively.
(c)
Interpretation:
The fraction of the digester gas that must be burned to heat the water from 160? to 180? should be obtained and it should be commented that what will happens to the other 20% of the heating value.
Concept introduction:
The biogas is burned in 80% efficient boiler, there is some amount of moisture content present in gas, so that some amount of heat is used to remove these moisture content.
The mass flow rate will be calculated from this formula:
Where m is the mass flow rate, Q is heat flow rate a, Cp is heat capacity and dT is change in temperature.
(d)
Interpretation:
If there is excess digester gas available after meeting the process-water heating demand, then the potential uses should be explained.
Concept introduction:
The boiler furnaces have the heavy application of digester gases which are consumed to heat the furnace. But, when the water-heating demand is filled, there remains the gases and energy consumed in heating the boiler and these sources of energy can be consumed in various other purposes.
Trending nowThis is a popular solution!
Chapter 9 Solutions
ELEM.PRIN.OF CHEMICAL...ABRIDGED (LL)
- The power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardO Consider a 0.8 m high and 0.5 m wide window with thickness of 8 mm and thermal conductivity of k = 0.78 W/m °C. For dry day, the temperature of outdoor is -10 °C and the inner room temperature is 20°C. Take the heat transfer coefficient on the inner and outer surface of the window to be h₁ = 10 W/m² °C and h₂ = 40 W/m² °C which includes the effects of insulation. Determine:arrow_forward
- 4. Show that the fraction, F, of the energy released from a supercritical chain reaction that originates in the final m generations of the chain is given approximately by F= 1 km provided the total number of generations is large.arrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP A solution containing 7.5% sulfuric acid by weight at 70 °F is concentrated to 45% by weight by evaporating water. The concentrated solution and the water vapor exit the evaporator at 170 °F and 1 atm. Calculate the rate at which heat must be transferred to the evaporator to process 1500 lbm/hr of the feed solution to the evaporator. It is recommended to use the enthalpy-concentration diagram for sulfuric acid from Chapter 8 of Felder's book or an enthalpy-concentration diagram for sulfuric acid found in another unit operations book or chemical engineering manual such as Perry's.arrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP Suppose that the system designed in problem 33 of the Thermodynamics II problem set from UAM-Azcapotzalco is relocated to another area near the sea, specifically, Ciudad del Carmen, Campeche. Recalculate the compressor-cooler system for the new environmental conditions. Make the considerations you deem logical in redesigning your system. Indicate the references or sources where you obtained your data.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The