
Concept explainers
The standard heat of the reaction
is
- Briefly explain what that means. Your explanation may take the form "When
(specifyquantities of reactant species and their physical states) react to form
(quantities of product
species and their physical state), the change in enthalpy is
What is
- for
- Estimate the enthalpy change associated with the consumption of 340 g NH3/s if the reactants and products are all at 25°C. (See Example 9.1-1.) What have you assumed about the reactor pressure? (You don't have to assume that it equals 1 atm.) The values of

(a)
To explain:
The given equation
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
When 4 moles of gaseous ammonia and 5 moles of gaseous oxygen react to form 4 moles of gaseous nitric oxide and 6 moles of gaseous water, the change in enthalpy is
Explanation of Solution
The standard heat of the reaction is,
When 4 moles of gaseous ammonia and 5 moles of gaseous oxygen react to form 4 moles of gaseous nitric oxide and 6 moles of gaseous water, the change in enthalpy is

(b)
To say:
Whether the reaction is exothermic or endothermic. To maintain the temperature constant, what would we do? If we ran the reactor adiabatically, what will be the state of the temperature?
Concept introduction:
A system will either absorbs heat or release heat to the surroundings. Exothermic reaction is the one where the heat gets released and endothermic reaction is the one where the heat gets absorbed. In exothermic, value of
Answer to Problem 9.1P
The reactor should be kept cool, to keep the temperature constant. The given reaction is exothermic. If the reactor is ran adiabatically, the temperature will get raise. The energy needed is low to break the reactant’s molecular bonds.
Explanation of Solution
We have

(c)
To find:
The
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the
Explanation of Solution
When we compare the reaction
So, for the reaction
Therefore, for the reaction

(d)
To find:
The
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the
Explanation of Solution
When we compare the reaction
So, for the reaction
Therefore, for the reaction
The reactants and products of the two reactions get reversed. So, the sign will also change.

(e)
To estimate:
The enthalpy change and the reactor pressure.
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the change in enthalpy at
Explanation of Solution
For the reaction
For 4g of
Converting 1g of
Converting 340g of
The change n enthalpy is,
The reactor pressure is same for reactants and products.

(f)
To explain:
Whether water exists as a vapor at
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the water exists as a vapor at
Explanation of Solution
Pure water will vapor at lower temperature. Therefore, water exists as a vapor at
Want to see more full solutions like this?
Chapter 9 Solutions
ELEM.PRIN.OF CHEMICAL...ABRIDGED (LL)
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
SURVEY OF OPERATING SYSTEMS
Mechanics of Materials (10th Edition)
Database Concepts (8th Edition)
Electric Circuits. (11th Edition)
Modern Database Management
- 1. (15) John had an loan plan shown in the following discrete cash flow diagram: $4,000 $6,000 GI $2,000 5 7 1 2 3 4 $3,000 $4,000 ? Years a. Please describe this diagram in terms of borrowing and payback. b. How much does John need to pay to totally payoff the loan at the end of year 8 if the interest rate is 8%? c. If John pays the sam amount of money at year 8, how much can John borrow at year 0 without paying back in between with the same interest rate?arrow_forwardA buffer solution is made by mixing 0.1 M acetic acid (HA) and 0.05 M sodium acetate (A⁻). The pKa of acetic acid is 4.76. Due to an experimental error, the actual pH was not recorded, and we need to solve for the concentration of the conjugate base (A⁻) given that the desired pH should be 4.90. Use the Bisection Method to find the concentration of A.arrow_forward1. Liquid heptane is stored in a 100,000-L storage vessel that is vented directly to air. The heptane is stored at 25°C and 1 atm pressure. The liquid is drained from the storage vessel and all that remains in the vessel is the air saturated with heptane vapor. a. Is the vapor in the storage vessel flammable? b. What is the TNT equivalent for the vapor remaining in the vessel? c. If the vapor explodes, what is the overpressure 50 m from the vessel? d. What damage can be expected at 50 m?arrow_forward
- 2. You have decided to use a vacuum purging technique to purge oxygen from a reactor vessel to reduce the concentration to 2.0% (mol). The reactor is 18 ft diameter and 40 ft tall. The temperature is 80°F. Assume that the vacuum purge goes from atmospheric pressure to 10.0 psia. How many purge cycles are required and how many total moles of nitrogen must be used? Assume the purge is done with pure nitrogen. 3. If the purging described in problem 2 takes place using nitrogen that has 1% (mol) oxygen in it, how many vacuum purge cycles are required? How many total moles of the inert gas must be used? 4. If the purging described in problem 2 is done by way of a "sweep-through" purge instead of a vacuum purge, for how long (in minutes) must the inert gas flow through the vessel if there is a 20 psig supply of pure nitrogen available at 150 CFM (ft³/min)? How much nitrogen must be used (lbm)?arrow_forward5. Look at Figure 7-14. Determine the voltage developed between the steel nozzle and the grounded vessel, and how much energy is stored in the nozzle. Explain the potential hazards for cases A and B from the following table: Case A Case B Hose length (ft) 75 75 Hose diameter (in) 2.0 2.0 Flow rate (gpm) 30 30 Liquid conductivity (mho/cm) 2x10-8 1x10-14 Dielectric constant 2.3 25 Density (g/cm³) 0.8 0.9 6. In Problem 5, case B, what would be the most effective way to reduce the potential hazards in this situation?arrow_forward2. You have decided to use a vacuum purging technique to purge oxygen from a reactor vessel to reduce the concentration to 2.0% (mol). The reactor is 18 ft diameter and 40 ft tall. The temperature is 80°F. Assume that the vacuum purge goes from atmospheric pressure to 10.0 psia. How many purge cycles are required and how many total moles of nitrogen must be used? Assume the purge is done with pure nitrogen.arrow_forward
- An 8-foot ion exchange bed needs to be backwashed with water to remove impurities. The particles have a density of 1.24 g/cm³ and an average size of 1.1 mm. Calculate: a. The minimum fluidization velocity using water at 30°C? b. The velocity required to expand the bed by 30%? Assumptions: The ion exchange bed particles are spherical (sphericity = 1.1), and the minimum fluidization porosity (ɛM) is 0.3. Notes: At 30°C, the viscosity (μ) of water is 0.797 cP, and the density (ρ) is 0.995 g/cm³.arrow_forwardfluidized bed reactor uses a solid catalyst with a particle diameter of 0.25 mm, a bulk density of 1.50 g/mL, and a sphericity of 0.90. Under packed bed conditions, the porosity is 0.35, and the bed height is 2 m. The gas enters from the bottom of the reactor at a temperature of 600°C, with a viscosity of 0.025 cP and a density of 0.22 lb/ft³. At minimum fluidization, the porosity reaches 0.45. Calculate: a. The minimum superficial velocity (VM) of the gas entering the fluidized column. b. The bed height if V = 2 VM c. The pressure drop under conditions where V =2.5 VMarrow_forwardA fluidized bed reactor uses a solid catalyst with a particle diameter of 0.25 mm, a bulk density of 1.50 g/mL, and a sphericity of 0.90. Under packed bed conditions, the porosity is 0.35, and the bed height is 2 m. The gas enters from the bottom of the reactor at a temperature of 600°C, with a viscosity of 0.025 cP and a density of 0.22 lb/ft³. At minimum fluidization, the porosity reaches 0.45. Calculate: a. The minimum superficial velocity (VM) of the gas entering the fluidized column. b. The bed height if V = 2 VM c. The pressure drop under conditions where V =2.5 VMarrow_forward
- Please answer 5.8arrow_forwardPlease answer 5.6arrow_forwardYou have been tasked with figuring out how to suppress changes in the supply flow rate to a reactorfor which it is desired to keep the inlet flow rate as constant as possible. You are considering designing a surgetank to place upstream of the reactor and then installing a pump on the line between that surge tank and thereactor. A surge tank is one with a weir inside it, which is a partial wall separating the tank volume into twoconnected sections allowing for flow under the weir between the two sections. The variable inlet mass flow,wi(t) flows into volume 1 and then flows due to hydrostatic pressure at a mass flow rate of w1(t) into volume 2.The weir causes a flow resistance, R1, such that w1 = (h1-h2)/R1. Fluid is then pumped out of volume 2 at thedesired constant mass flow rate of w2. Make a summary table of the three transfer functions written in standard form and their keyparameters (gains, time constants) in terms of the physical system parameters (A1, A2, , A, R…). Checkif/how…arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





