Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 9, Problem 9.68QP

(a)

Interpretation Introduction

Interpretation:

The masses of given solutes require to prepare 250mL of 0.100M solutions are should be determined.

Concept introduction:

Mole:

Mole of the solute in the solution is given by the multiplication of concentration and volume in liter.

Mole=concentration(M)×volume(L)

Mass:

The mass of solute present in the solution is given by multiplication of mole and molar mass of the solute.

Mass=Mole×Molarmass

(a)

Expert Solution
Check Mark

Explanation of Solution

Record the given data,

The molarities of solutions are 0.100M

The volumes of solution are 250L

The required molarities and volumes of solutions are recorded as shown above.

The mole of given 250mLof 0.100M solutions

Mole=0.1000.250L=0.0250mole

The multiplication of given molarity and volume to give mole of the each solutions

The mass of CsBrrequire to prepare 250mLof 0.100M CsBrsolutions.

From the standard data the molar mass of CsBr is 212.81 g

=0.0250molCsBr×212.81 g CsBr1molCsBr=5.32gCsBr

  • The calculated mole and molar mass of the solute is plugged in the above equation to give the require mass of solute to prepare the 250mL of 0.100M solution.
  • The require mass of CsBr to prepare the 250mL of 0.100M of CsBr solution is 5.32g.

(b)

Interpretation Introduction

Interpretation:

The masses of given solutes require to prepare 250mL of 0.100M solutions are should be determined.

Concept introduction:

Mole:

Mole of the solute in the solution is given by the multiplication of concentration and volume in liter.

Mole=concentration(M)×volume(L)

Mass:

The mass of solute present in the solution is given by multiplication of mole and molar mass of the solute.

Mass=Mole×Molarmass

(b)

Expert Solution
Check Mark

Explanation of Solution

Record the given data,

The molarities of solutions are 0.100M

The volumes of solution are 250L

The required molarities and volumes of solutions are recorded as shown above.

The mole of given 250mLof 0.100M solutions

Mole=0.1000.250L=0.0250mole

The multiplication of given molarity and volume to give mole of the each solutions

The mass of CaSO4require to prepare 250mLof 0.100M CaSO4solutions.

From the standard data the molar mass of CaSO4 is 136.14 g

=0.0250molCaSO4×136.14 g CaSO41molCaSO4=3.40gCaSO4

The calculated mole and molar mass of the solute is plugged in the above equation to give the require mass of solute to prepare 250mL of 0.100M solution.

The require mass of CaSO4 to prepare 250mL of 0.100M CaSO4 solution is 5.32g.

(c)

Interpretation Introduction

Interpretation:

The masses of given solutes require to prepare 250mL of 0.100M solutions are should be determined.

Concept introduction:

Mole

Mole of the solute in the solution is given by the multiplication of concentration and volume in liter.

Mole=concentration(M)×volume(L)

Mass:

The mass of solute present in the solution is given by multiplication of mole and molar mass of the solute.

Mass=Mole×Molarmass

(c)

Expert Solution
Check Mark

Explanation of Solution

Record the given data,

The molarities of solutions are 0.100M

The volumes of solution are 250L

The required molarities and volumes of solutions are recorded as shown above.

The mole of given 250mLof 0.100M solutions

Mole=0.1000.250L=0.0250mole

The multiplication of given molarity and volume to give mole of the each solutions

The mass of Na3PO4 require to prepare 250mLof 0.100M Na3PO4solutions.

From the standard data the molar mass of Na3PO4 is 163.94 g

=0.0250molNa3PO4×163.94 g Na3PO41molNa3PO4=4.10gNa3PO4

  • The calculated mole and molar mass of the solute is plugged in the above equation to give the require mass of solute to prepare 250mL of 0.100M solution.
  • The require mass of Na3PO4 to prepare the 250mL of 0.100M of Na3PO4 solution is 4.10g.

(d)

Interpretation Introduction

Interpretation:

The masses of given solutes require to prepare 250mL of 0.100M solutions are should be determined.

Concept introduction:

Mole:

Mole of the solute in the solution is given by the multiplication of concentration and volume in liter.

Mole=concentration(M)×volume(L)

Mass:

The mass of solute present in the solution is given by multiplication of mole and molar mass of the solute.

Mass=Mole×Molarmass

(d)

Expert Solution
Check Mark

Explanation of Solution

Record the given data,

The molarities of solutions are 0.100M

The volumes of solution are 250L

The required molarities and volumes of solutions are recorded as shown above.

The mole of given 250mLof 0.100M solutions

Mole=0.1000.250L=0.0250mole

The multiplication of given molarity and volume to give mole of the each solutions

The mass of Li2Cr2O7 require to prepare 250mLof 0.100M Li2Cr2O7given solutions.

From the standard data the molar mass of Li2Cr2O7 is 229.87 g

=0.0250molLi2Cr2O7×229.87 g Li2Cr2O71molLi2Cr2O7=5.75gLi2Cr2O7

  • The calculated mole and molar mass of the solute is plugged in the above equation to give the require mass of solute to prepare 250mL of 0.100M solution.
  • The require mass of Li2Cr2O7 to prepare 250mL of 0.100M Li2Cr2O7 solution is 5.75g.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution.  How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…

Chapter 9 Solutions

Chemistry: Atoms First

Ch. 9.2 - Prob. 2PPACh. 9.2 - Prob. 2PPBCh. 9.2 - Using Tables 9.2 and 9.3, identify a compound that...Ch. 9.2 - Prob. 3WECh. 9.2 - Prob. 3PPACh. 9.2 - Prob. 3PPBCh. 9.2 - Which diagram best represents the result when...Ch. 9.2 - Prob. 9.2.1SRCh. 9.2 - Prob. 9.2.2SRCh. 9.2 - Prob. 9.2.3SRCh. 9.2 - Prob. 9.2.4SRCh. 9.2 - Prob. 9.2.5SRCh. 9.3 - Prob. 9.4WECh. 9.3 - Prob. 4PPACh. 9.3 - Prob. 4PPBCh. 9.3 - Prob. 4PPCCh. 9.3 - Prob. 9.3.1SRCh. 9.3 - Prob. 9.3.2SRCh. 9.3 - Which of the following is the correct net ionic...Ch. 9.3 - Prob. 9.3.4SRCh. 9.4 - Prob. 9.5WECh. 9.4 - Prob. 5PPACh. 9.4 - Prob. 5PPBCh. 9.4 - Write the balanced equation for the reaction...Ch. 9.4 - Prob. 9.6WECh. 9.4 - Using the activity series, predict which of the...Ch. 9.4 - Prob. 6PPBCh. 9.4 - Prob. 6PPCCh. 9.4 - Prob. 9.7WECh. 9.4 - Predict which of the following reactions will...Ch. 9.4 - Prob. 7PPBCh. 9.4 - Prob. 7PPCCh. 9.4 - Determine the oxidation number of sulfur in each...Ch. 9.4 - Prob. 9.4.2SRCh. 9.4 - Prob. 9.4.3SRCh. 9.4 - Prob. 9.4.4SRCh. 9.5 - Prob. 9.8WECh. 9.5 - Prob. 8PPACh. 9.5 - Prob. 8PPBCh. 9.5 - Prob. 8PPCCh. 9.5 - Prob. 9.9WECh. 9.5 - Prob. 9PPACh. 9.5 - Prob. 9PPBCh. 9.5 - Prob. 9PPCCh. 9.5 - Starting with a 2.0-M stock solution of...Ch. 9.5 - Starting with a 6.552-M stock solution of HNO3,...Ch. 9.5 - Five standard solutions of HBr are prepared by...Ch. 9.5 - Prob. 10PPCCh. 9.5 - Prob. 9.11WECh. 9.5 - Prob. 11PPACh. 9.5 - Prob. 11PPBCh. 9.5 - Prob. 11PPCCh. 9.5 - Prob. 9.12WECh. 9.5 - Calculate the hydronium ion concentration in a...Ch. 9.5 - Prob. 12PPBCh. 9.5 - Prob. 12PPCCh. 9.5 - Prob. 9.13WECh. 9.5 - Prob. 13PPACh. 9.5 - Prob. 13PPBCh. 9.5 - Prob. 13PPCCh. 9.5 - Prob. 9.5.1SRCh. 9.5 - What mass of glucose (C6H12O6) in grams must be...Ch. 9.5 - Prob. 9.5.3SRCh. 9.5 - Prob. 9.5.4SRCh. 9.5 - Prob. 9.5.5SRCh. 9.5 - Prob. 9.5.6SRCh. 9.6 - Prob. 9.14WECh. 9.6 - Prob. 14PPACh. 9.6 - Prob. 14PPBCh. 9.6 - Which diagram best represents the solution...Ch. 9.6 - Prob. 9.15WECh. 9.6 - Prob. 15PPACh. 9.6 - What volume (in mL) of a 0.2550 M NaOH solution...Ch. 9.6 - Prob. 15PPCCh. 9.6 - Prob. 9.16WECh. 9.6 - Prob. 16PPACh. 9.6 - Prob. 16PPBCh. 9.6 - Prob. 9.17WECh. 9.6 - Prob. 17PPACh. 9.6 - What is the molar mass of a diprotic acid if 30.5...Ch. 9.6 - Prob. 17PPCCh. 9.6 - Prob. 9.6.1SRCh. 9.6 - Prob. 9.6.2SRCh. 9.6 - Prob. 9.6.3SRCh. 9.6 - Prob. 9.6.4SRCh. 9 - What is the balanced net ionic equation for the...Ch. 9 - Prob. 9.2KSPCh. 9 - Prob. 9.3KSPCh. 9 - Prob. 9.4KSPCh. 9 - Define solute, solvent, and solution by describing...Ch. 9 - What is the difference between a nonelectrolyte...Ch. 9 - Prob. 9.3QPCh. 9 - Prob. 9.4QPCh. 9 - Prob. 9.5QPCh. 9 - Prob. 9.6QPCh. 9 - You are given a water-soluble compound X. Describe...Ch. 9 - Prob. 9.8QPCh. 9 - Prob. 9.9QPCh. 9 - Prob. 9.10QPCh. 9 - Which of the following diagrams best represents...Ch. 9 - Prob. 9.12QPCh. 9 - Prob. 9.13QPCh. 9 - Describe hydration. What properties of water...Ch. 9 - What is the difference between a molecular...Ch. 9 - Prob. 9.16QPCh. 9 - Prob. 9.17QPCh. 9 - Prob. 9.18QPCh. 9 - Which reaction is represented by the net ionic...Ch. 9 - Prob. 9.20QPCh. 9 - Characterize the following compounds as soluble or...Ch. 9 - Write ionic and net ionic equations for the...Ch. 9 - Write ionic and net ionic equations for the...Ch. 9 - Prob. 9.24QPCh. 9 - Which of the following processes will likely...Ch. 9 - List the general properties of acids and bases.Ch. 9 - Prob. 9.27QPCh. 9 - Prob. 9.28QPCh. 9 - Prob. 9.29QPCh. 9 - What factors qualify a compound as a salt? Specify...Ch. 9 - Identify the following as a weak or strong acid or...Ch. 9 - Prob. 9.32QPCh. 9 - Prob. 9.33QPCh. 9 - Prob. 9.34QPCh. 9 - Prob. 9.35QPCh. 9 - Prob. 9.36QPCh. 9 - Prob. 9.37QPCh. 9 - Prob. 9.38QPCh. 9 - Describe how the activity series is organized, and...Ch. 9 - Prob. 9.40QPCh. 9 - Prob. 9.41QPCh. 9 - For the complete redox reactions represented here,...Ch. 9 - Prob. 9.43QPCh. 9 - Prob. 9.44QPCh. 9 - Prob. 9.45QPCh. 9 - Prob. 9.46QPCh. 9 - Give the oxidation numbers for the underlined...Ch. 9 - Give the oxidation numbers for the underlined...Ch. 9 - Prob. 9.49QPCh. 9 - Prob. 9.50QPCh. 9 - Prob. 9.51QPCh. 9 - Prob. 9.52QPCh. 9 - Prob. 9.53QPCh. 9 - Prob. 9.54QPCh. 9 - Prob. 9.55QPCh. 9 - Which of the following would result in the actual...Ch. 9 - Why cant we prepare the solution by first filling...Ch. 9 - Prob. 9.3VCCh. 9 - Prob. 9.4VCCh. 9 - Prob. 9.56QPCh. 9 - Prob. 9.57QPCh. 9 - Prob. 9.58QPCh. 9 - Prob. 9.59QPCh. 9 - Prob. 9.60QPCh. 9 - Prob. 9.61QPCh. 9 - Prob. 9.62QPCh. 9 - Prob. 9.63QPCh. 9 - Prob. 9.64QPCh. 9 - Prob. 9.65QPCh. 9 - Prob. 9.66QPCh. 9 - Prob. 9.67QPCh. 9 - Prob. 9.68QPCh. 9 - Prob. 9.69QPCh. 9 - Prob. 9.70QPCh. 9 - Prob. 9.71QPCh. 9 - Prob. 9.72QPCh. 9 - Prob. 9.73QPCh. 9 - Prob. 9.74QPCh. 9 - Prob. 9.75QPCh. 9 - Prob. 9.76QPCh. 9 - Prob. 9.77QPCh. 9 - Prob. 9.78QPCh. 9 - Prob. 9.79QPCh. 9 - Prob. 9.80QPCh. 9 - Prob. 9.81QPCh. 9 - Prob. 9.82QPCh. 9 - Complete the following table for a solution at...Ch. 9 - (a) What is the Na+ concentration in each of the...Ch. 9 - (a) Determine the chloride ion concentration in...Ch. 9 - Prob. 9.86QPCh. 9 - Determine the resulting nitrate ion concentration...Ch. 9 - Prob. 9.88QPCh. 9 - Absorbance values for five standard solutions of a...Ch. 9 - Which best represents the before-and-after...Ch. 9 - Prob. 9.91QPCh. 9 - Describe the basic steps involved in gravimetric...Ch. 9 - Explain why distilled water must be used in the...Ch. 9 - Describe the basic steps involved in an acid-base...Ch. 9 - Prob. 9.95QPCh. 9 - Prob. 9.96QPCh. 9 - Would the volume of a 0.10 M NaOH solution needed...Ch. 9 - Prob. 9.98QPCh. 9 - Prob. 9.99QPCh. 9 - The concentration of Cu2+ ions in the water (which...Ch. 9 - How many grams of NaCl are required to precipitate...Ch. 9 - Prob. 9.102QPCh. 9 - Prob. 9.103QPCh. 9 - Prob. 9.104QPCh. 9 - Prob. 9.105QPCh. 9 - Which of the following best represents the...Ch. 9 - Prob. 9.107QPCh. 9 - Prob. 9.108QPCh. 9 - Prob. 9.109QPCh. 9 - Prob. 9.110QPCh. 9 - Prob. 9.111QPCh. 9 - A 5.00 102 mL sample of 2.00 M HCl solution is...Ch. 9 - Calculate the volume of a 0.156 M CuSO4 solution...Ch. 9 - Prob. 9.114QPCh. 9 - Prob. 9.115QPCh. 9 - Prob. 9.116QPCh. 9 - Prob. 9.117QPCh. 9 - Prob. 9.118QPCh. 9 - Prob. 9.119QPCh. 9 - Prob. 9.120QPCh. 9 - Prob. 9.121QPCh. 9 - Prob. 9.122QPCh. 9 - Prob. 9.123QPCh. 9 - Prob. 9.124QPCh. 9 - Classify the following reactions according to the...Ch. 9 - Prob. 9.126QPCh. 9 - Prob. 9.127QPCh. 9 - Prob. 9.128QPCh. 9 - Prob. 9.129QPCh. 9 - Prob. 9.130QPCh. 9 - Prob. 9.131QPCh. 9 - Prob. 9.132QPCh. 9 - Prob. 9.133QPCh. 9 - Prob. 9.134QPCh. 9 - Prob. 9.135QPCh. 9 - Prob. 9.136QPCh. 9 - The concentration of lead ions (Pb2+) in a sample...Ch. 9 - Prob. 9.138QPCh. 9 - Prob. 9.139QPCh. 9 - Prob. 9.140QPCh. 9 - Prob. 9.141QPCh. 9 - Prob. 9.142QPCh. 9 - Prob. 9.143QPCh. 9 - The following are common household compounds: salt...Ch. 9 - Prob. 9.145QPCh. 9 - A 0.8870-g sample of a mixture of NaCl and KCl is...Ch. 9 - Prob. 9.147QPCh. 9 - Prob. 9.148QPCh. 9 - Acetylsalicylic acid (HC9H7O4) is a monoprotic...Ch. 9 - Prob. 9.150QPCh. 9 - Prob. 9.151QPCh. 9 - Prob. 9.152QPCh. 9 - Prob. 9.153QPCh. 9 - Prob. 9.154QPCh. 9 - Prob. 9.155QPCh. 9 - Prob. 9.156QPCh. 9 - Prob. 9.157QPCh. 9 - Prob. 9.158QPCh. 9 - Prob. 9.159QPCh. 9 - Prob. 9.160QPCh. 9 - Prob. 9.161QPCh. 9 - Prob. 9.162QPCh. 9 - Give a chemical explanation for each of the...Ch. 9 - Prob. 9.164QPCh. 9 - The following cycle of copper experiment is...Ch. 9 - Use the periodic table framework given here to...Ch. 9 - A 22.02-mL solution containing 1.615 g Mg(NO3)2 is...Ch. 9 - Because the acid-base and precipitation reactions...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning