Concept explainers
Interpretation: The Lewis structure and shape of the given compound, the hybridization of the central atom and the resonating structure that has formal charge close to zero is to be identified.
Concept introduction: The Lewis structure represents all bonding and non-bonding electrons surrounding the atoms involved in a molecule. A molecule exhibits a particular geometry in space considering the steric hindrances of the bond pairs and the lone pairs of electron.
Resonance structures are different forms of a molecule in which the chemical connectivity of the atoms in a molecule is same but there distribution of electrons is different.
The formal charge is calculated by the formula,
To determine: The Lewis structure and shape of the given compound, the hybridization of the central atom and the resonating structure that has formal charge close to zero.
Answer to Problem 9.64QP
Solution
The Lewis structure of
The resonating structure 1 has formal charge close to zero.
The shape of the molecule is bent and the hybridization of the central atom is
Explanation of Solution
Explanation
The
The electronic configuration of
The number of valence electrons of
The atomic number of
The electronic configuration of
The number of valence electrons of
The total number of valence electrons of
The Lewis structure of
Figure 1
Resonance structures are different forms of a molecule in which the chemical connectivity of the atoms in a molecule is same but there distribution of electrons is different.
The resonance structure of
Figure 2
The formal charge is calculated by the formula,
According to the 1 resonating structure of the given compound from figure 2,
- Chlorine has six bonding and four nonbonding electrons.
- Oxygen (a) has four bonding electrons and four nonbonding electrons.
- Oxygen (b) has two bonding and six nonbonding electrons.
The formal charge of chlorine in resonating structure 1 is calculated as,
The formal charge of oxygen (a) in resonating structure 1 is calculated as,
The formal charge of oxygen (b) in resonating structure 1 is calculated as,
According to the 2 resonating structure of the given compound from figure 2,
- Chlorine has four bonding and four nonbonding electrons.
- Oxygen (c) has four bonding electrons and four nonbonding electrons.
- Oxygen (d) has four bonding and four nonbonding electron.
The formal charge of chlorine in resonating structure 2 is calculated as,
The formal charge of oxygen (a) in resonating structure 1 is calculated as,
The formal charge of oxygen (b) in resonating structure 1 is calculated as,
The central atom chlorine is zero in resonating structure 1.
The molecular shape of
Conclusion
The Lewis structure of
The resonating structure 1 has formal charge close to zero.
The shape of the molecule is bent and the hybridization of the central atom is
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry
- Please correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forwardQuantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forward
- Quantum mechanics. In translational motion, the summation is replaced by an integral when evaluating the partition function. This is correct becausea) the spacing of the translational energy levels is very small compared to the product kTb) the spacing of the translational energy levels is comparable to the product kTc) the spacing of the translational energy levels is very large compared to the product kTarrow_forwardDon't used Ai solutionarrow_forwardPlease correct answer and don't used hand raiting don't used Ai solutionarrow_forward
- If the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardIf the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardLaser. Indicate the relationship between metastable state and stimulated emission.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY