Get Ready for Organic Chemistry
Get Ready for Organic Chemistry
2nd Edition
ISBN: 9780321774125
Author: KARTY, Joel
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 9.55P
Interpretation Introduction

Interpretation:

The mechanisms of the two given reactions giving the same SN2 product are to be drawn, and the product is to be determined. It is to be determined which of the two reactions is more efficient.

Concept introduction:

Primary alkyl halides tend to undergo an SN2 reaction. The SN2 mechanism is a single step, bimolecular reaction. The nucleophile attacks the electrophilic carbon in the substrate, forcing the leaving group to break off. The rate of the reaction and its efficiency depends on the nature of both the substrate and the nucleophile.

In case of the substrate, the relative rate of an SN2 reaction changes with the type of carbon as methyl > 1o > 2o > 3o because of the increasing steric hindrance.

In case of the nucleophile, the steric hindrance is less important as the reaction center, i.e., the atom which donates the electron pair, is away from any bulky alkyl groups.

Sodium salts of alcohols are ionic compounds and tend to behave as a spectator ion Na+ and the nucleophilic anion RO, where R is the alkyl group in the alcohol.

Blurred answer
Students have asked these similar questions
The decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...
Don't used hand raiting
CS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?

Chapter 9 Solutions

Get Ready for Organic Chemistry

Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.32PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.36PCh. 9 - Prob. 9.37PCh. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Prob. 9.42PCh. 9 - Prob. 9.43PCh. 9 - Prob. 9.44PCh. 9 - Prob. 9.45PCh. 9 - Prob. 9.46PCh. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - Prob. 9.58PCh. 9 - Prob. 9.59PCh. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.62PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Prob. 9.65PCh. 9 - Prob. 9.66PCh. 9 - Prob. 9.67PCh. 9 - Prob. 9.68PCh. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - Prob. 9.71PCh. 9 - Prob. 9.72PCh. 9 - Prob. 9.73PCh. 9 - Prob. 9.74PCh. 9 - Prob. 9.75PCh. 9 - Prob. 9.76PCh. 9 - Prob. 9.77PCh. 9 - Prob. 9.78PCh. 9 - Prob. 9.79PCh. 9 - Prob. 9.80PCh. 9 - Prob. 9.81PCh. 9 - Prob. 9.82PCh. 9 - Prob. 9.83PCh. 9 - Prob. 9.84PCh. 9 - Prob. 9.1YTCh. 9 - Prob. 9.2YTCh. 9 - Prob. 9.3YTCh. 9 - Prob. 9.4YTCh. 9 - Prob. 9.5YTCh. 9 - Prob. 9.6YTCh. 9 - Prob. 9.7YTCh. 9 - Prob. 9.8YTCh. 9 - Prob. 9.9YTCh. 9 - Prob. 9.10YTCh. 9 - Prob. 9.11YTCh. 9 - Prob. 9.12YTCh. 9 - Prob. 9.13YTCh. 9 - Prob. 9.14YTCh. 9 - Prob. 9.15YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning