Calcium chloride is a salt used in a number of food and medicinal applications and in brine for refrigeration systems. Its most distinctive property is its affinity for water: in its anhydrous form it efficiently absorbs water vapor from gases, and from aqueous liquid solutions it can form (at different conditions) calcium chloride hydrate
You have been given the task of determining the standard heat of the reaction in which calcium chloride hexahydrate is formed from anhydrous calcium chloride:
By definition, the desired quantity is the heat of hydration of calcium chloride hexahydrate. You cannot carry out the hydration reaction directly, so you resort to an indirect method. You first dissolve 1.00 mol of anhydrous CaCl2in 10.0 mol of water in a calorimeter and determine that 64.85 kJ of heat must be transferred away from the calorimeter to keep the solution temperature at 25°C. You next dissolve 1.00 mol of the hexahydrate salt in 4.00 mol of water and find that 32.1 kJ of heat must be transferred to the calorimeter to keep the temperature at 25°C.
- Use these results to calculate the desired heat of reaction. (Suggestion: Begin by writing out the stoichiometric equations for the two dissolution processes.)
- Calculate the standard heat of reaction in kJ for Ca(s), Cl2(g) and H2O reacting to form CaCl2(aq, r= 10).
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
ELEM.PRINCIPLES OF CHEMICAL PROCESSES
Additional Engineering Textbook Solutions
Starting Out with Python (4th Edition)
Starting Out With Visual Basic (8th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
- and the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forwardA chemical reaction takes place in a container of cross-sectional area 50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm against an external pressure of 121 kPa. Calculate the work done (in J) by the system.arrow_forwardExample 7.2 Steam is generated in a high pressure boiler containing tubes 2.5 m long and 12.5 mm internal diameter. The wall roughness is 0.005 mm. Water enters the tubes at a pressure of 55.05 bar and a temperature of 270°C, and the water flow rate through each tube is 500 kg/h. Each tube is heated uniformly at a rate of 50 kW. Calle (a) Estimate the pressure drop across each tube (neglecting end effects) using (i) the homogeneous flow model and (ii) the Martinelli-Nelson correlation. (b) How should the calculation be modified if the inlet temperature were 230°C at the same pressure?arrow_forward
- Please solve this question by simulation in aspen hysysarrow_forward(11.35. For a binary gas mixture described by Eqs. (3.37) and (11.58), prove that: 4812 Pу132 ✓ GE = 812 Py1 y2. ✓ SE dT HE-12 T L = = (812 - 7 1/8/123) d² 812 Pylyz C=-T Pylyz dT dT² See also Eq. (11.84), and note that 812 = 2B12 B11 - B22. perimental values of HE for binary liquid mixtures ofarrow_forwardplease provide me the solution with more details. because the previous solution is not cleararrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The