University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 9.36E
A wheel is turning about an axis through its center with constant
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 9 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 9.1 - The figure shows a graph of z and z versus time...Ch. 9.2 - Suppose the disc in Example 9.3 was initially...Ch. 9.3 - Prob. 9.3TYUCh. 9.4 - Suppose the cylinder and block in Example 9.8 have...Ch. 9.5 - A pool cue is a wooden rod of uniform composition...Ch. 9.6 - Two hollow cylinders have the same inner and outer...Ch. 9 - Which of the following formulas is valid if the...Ch. 9 - A diatomic molecule can be modeled as two point...Ch. 9 - What is the difference between tangential and...Ch. 9 - In Fig. Q9.4, all points on the chain have the...
Ch. 9 - In Fig. Q9.4, how are the radial accelerations of...Ch. 9 - A flywheel rotates with constant angular velocity....Ch. 9 - What is the purpose of the spin cycle of a washing...Ch. 9 - You are designing a flywheel to store kinetic...Ch. 9 - Can you think of a body that has the same moment...Ch. 9 - To maximize the moment of inertia of a flywheel...Ch. 9 - How might you determine experimentally the moment...Ch. 9 - A cylindrical body has mass M and radius R. Can...Ch. 9 - Describe how you could use part (b) of Table 9.2...Ch. 9 - A hollow spherical shell of radius R that is...Ch. 9 - For the equations for I given in parts (a) and (b)...Ch. 9 - In part (d) of Table 9.2, the thickness of the...Ch. 9 - Two identical balls, A and B, are each attached to...Ch. 9 - An elaborate pulley consists of four identical...Ch. 9 - You can use any angular measureradians, degrees,...Ch. 9 - When calculating the moment of inertia of an...Ch. 9 - A wheel is rotating about an axis perpendicular to...Ch. 9 - Estimate your own moment of inertia about a...Ch. 9 - (a) What angle in radians is subtended by an are...Ch. 9 - An airplane propeller is rotating at 1900 rpm...Ch. 9 - CP CALC The angular velocity of a flywheel obeys...Ch. 9 - CALC A fan blade rotates with angular velocity...Ch. 9 - CALC A child is pushing a merry-go-round. The...Ch. 9 - CALC At t = 0 the current to a dc electric motor...Ch. 9 - CALC The angle through which a disk drive turns...Ch. 9 - A wheel is rotating about an axis that is in the...Ch. 9 - A bicycle wheel has an initial angular velocity of...Ch. 9 - An electric fan is turned off, and its angular...Ch. 9 - The rotating blade of a blender turns with...Ch. 9 - (a) Derive Eq. (9.12) by combining Eqs. (9.7) and...Ch. 9 - A turntable rotates with a constant 2.25 rad/s2...Ch. 9 - A circular saw blade 0.200 m in diameter starts...Ch. 9 - A high-speed flywheel in a motor is spinning at...Ch. 9 - At t = 0 a grinding wheel has an angular velocity...Ch. 9 - A safety device brings the blade of a power mower...Ch. 9 - In a charming 19th-century hotel, an old-style...Ch. 9 - Using Appendix F, along with the fact that the...Ch. 9 - Compact Disc. A compact disc (CD) stores music in...Ch. 9 - A wheel of diameter 40.0 cm starts from rest and...Ch. 9 - You are to design a rotating cylindrical axle to...Ch. 9 - A flywheel with a radius of 0.300 m starts from...Ch. 9 - An electric turntable 0.750 m in diameter is...Ch. 9 - Centrifuge. An advertisement claims that a...Ch. 9 - At t = 3.00 s a point on the rim of a...Ch. 9 - Electric Drill. According to the shop manual, when...Ch. 9 - Four small spheres, each of which you can regard...Ch. 9 - Calculate the moment of inertia of each of the...Ch. 9 - Calculate the moment of inertia of each of the...Ch. 9 - A uniform bar has two small balls glued to its...Ch. 9 - You are a project manager for a manufacturing...Ch. 9 - A wagon wheel is constructed as shown in Fig....Ch. 9 - An airplane propeller is 2.08 m in length (from...Ch. 9 - A compound disk of outside diameter 140.0 cm is...Ch. 9 - A wheel is turning about an axis through its...Ch. 9 - A uniform sphere with mass 28.0 kg and radius...Ch. 9 - A hollow spherical shell has mass 8.20 kg and...Ch. 9 - The flywheel of a gasoline engine is required to...Ch. 9 - You need to design an industrial turntable that is...Ch. 9 - Energy is to be stored in a 70.0-kg flywheel in...Ch. 9 - A light, flexible rope is wrapped several times...Ch. 9 - A frictionless pulley has the shape of a uniform...Ch. 9 - A bucket of mass m is tied to a massless cable...Ch. 9 - CP A thin, light wire is wrapped around the rim of...Ch. 9 - A uniform 2.00-m ladder of mass 9.00 kg is leaning...Ch. 9 - How I Scales. If we multiply all the design...Ch. 9 - Find the moment of inertia of a hoop (a...Ch. 9 - About what axis will a uniform, balsa-wood sphere...Ch. 9 - (a) For the thin rectangular plate shown in part...Ch. 9 - A thin. rectangular sheet of metal has mass M and...Ch. 9 - A thin uniform rod of mass M and length L is bent...Ch. 9 - Prob. 9.53ECh. 9 - CALC Use Eq. (9.20) to calculate the moment of...Ch. 9 - CALC A slender rod with length L has a mass per...Ch. 9 - CALC A uniform disk with radius R = 0.400 m and...Ch. 9 - CP A circular saw blade with radius 0.120 m starts...Ch. 9 - CALC A roller in a printing press turns through an...Ch. 9 - CP CALC A disk of radius 25.0 cm is free to turn...Ch. 9 - You are designing a rotating metal flywheel that...Ch. 9 - You must design a device for shooting a small...Ch. 9 - Engineers are designing a system by which a...Ch. 9 - A vacuum cleaner bell is looped over a shaft of...Ch. 9 - The motor of a table saw is rotating at 3450...Ch. 9 - While riding a multispeed bicycle, the rider can...Ch. 9 - A computer disk drive is turned on starting from...Ch. 9 - It has been argued that power plants should make...Ch. 9 - A uniform disk has radius R0 and mass M0. Its...Ch. 9 - Measuring I. As an intern at an engineering firm,...Ch. 9 - A uniform, solid disk with mass m and radius R is...Ch. 9 - CP A meter stick with a mass of 0.180 kg is...Ch. 9 - A physics student of mass 43.0 kg is standing at...Ch. 9 - A slender rod is 80.0 cm long and has mass 0.120...Ch. 9 - Exactly one turn of a flexible rope with mass m is...Ch. 9 - The pulley in Fig. P9.75 has radius R and a moment...Ch. 9 - The pulley in Fig. P9.76 has radius 0.160 m and...Ch. 9 - Two metal disks, one with radius R1 = 2.50 cm and...Ch. 9 - A thin, light wire is wrapped around the rim of a...Ch. 9 - In the system shown in Fig. 9.17, a 12.0-kg mass...Ch. 9 - In Fig. P9.80, the cylinder and pulley turn...Ch. 9 - BIO The Kinetic Energy of Walking. If a person of...Ch. 9 - Prob. 9.82PCh. 9 - 810 Human Rotational Energy. A dancer is spinning...Ch. 9 - A thin, uniform rod is bent into a square of side...Ch. 9 - Prob. 9.85PCh. 9 - CALC Neutron Stars and Supernova Remnants. The...Ch. 9 - DATA A technician is testing a...Ch. 9 - DATA You are analyzing the motion of a large...Ch. 9 - DATA You are rebuilding a 1965 Chevrolet. To...Ch. 9 - CALC Calculate the moment of inertia of a uniform...Ch. 9 - CALC On a compact disc (CD), music is coded in a...Ch. 9 - BIO THE SPINNING EEL.American eels (Anguilla...Ch. 9 - BIO THE SPINNING EEL. American eels (Anguilla...Ch. 9 - BIO THE SPINNING EEL.American eels (Anguilla...Ch. 9 - THE SPINNING EEL.American eels (Anguilla rostrata)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
49. Write full electron configuration for each element.
a. Sr
b. Ge
c. Li
d. Kr
Introductory Chemistry (6th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
How is migration based on circannual rhythms poorly suited for adaptation to global climate change?
Campbell Biology (11th Edition)
Describe the 1H NMR spectrum you would expect for each of the following compounds, indicating the relative posi...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forward
- An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forward
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License