
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 9.44E
A bucket of mass m is tied to a massless cable that is wrapped around the outer rim of a frictionless uniform pulley of radius R, similar to the system shown in Fig. E9.43. In terms of the stated variables, what must be the moment of inertia of the pulley so that it always has half as much kinetic energy as the bucket?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere.
What is the magnitude E of the electric field midway between the spheres?
Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?
A conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings.
Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a.
Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?
A small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.
Chapter 9 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 9.1 - The figure shows a graph of z and z versus time...Ch. 9.2 - Suppose the disc in Example 9.3 was initially...Ch. 9.3 - Prob. 9.3TYUCh. 9.4 - Suppose the cylinder and block in Example 9.8 have...Ch. 9.5 - A pool cue is a wooden rod of uniform composition...Ch. 9.6 - Two hollow cylinders have the same inner and outer...Ch. 9 - Which of the following formulas is valid if the...Ch. 9 - A diatomic molecule can be modeled as two point...Ch. 9 - What is the difference between tangential and...Ch. 9 - In Fig. Q9.4, all points on the chain have the...
Ch. 9 - In Fig. Q9.4, how are the radial accelerations of...Ch. 9 - A flywheel rotates with constant angular velocity....Ch. 9 - What is the purpose of the spin cycle of a washing...Ch. 9 - You are designing a flywheel to store kinetic...Ch. 9 - Can you think of a body that has the same moment...Ch. 9 - To maximize the moment of inertia of a flywheel...Ch. 9 - How might you determine experimentally the moment...Ch. 9 - A cylindrical body has mass M and radius R. Can...Ch. 9 - Describe how you could use part (b) of Table 9.2...Ch. 9 - A hollow spherical shell of radius R that is...Ch. 9 - For the equations for I given in parts (a) and (b)...Ch. 9 - In part (d) of Table 9.2, the thickness of the...Ch. 9 - Two identical balls, A and B, are each attached to...Ch. 9 - An elaborate pulley consists of four identical...Ch. 9 - You can use any angular measureradians, degrees,...Ch. 9 - When calculating the moment of inertia of an...Ch. 9 - A wheel is rotating about an axis perpendicular to...Ch. 9 - Estimate your own moment of inertia about a...Ch. 9 - (a) What angle in radians is subtended by an are...Ch. 9 - An airplane propeller is rotating at 1900 rpm...Ch. 9 - CP CALC The angular velocity of a flywheel obeys...Ch. 9 - CALC A fan blade rotates with angular velocity...Ch. 9 - CALC A child is pushing a merry-go-round. The...Ch. 9 - CALC At t = 0 the current to a dc electric motor...Ch. 9 - CALC The angle through which a disk drive turns...Ch. 9 - A wheel is rotating about an axis that is in the...Ch. 9 - A bicycle wheel has an initial angular velocity of...Ch. 9 - An electric fan is turned off, and its angular...Ch. 9 - The rotating blade of a blender turns with...Ch. 9 - (a) Derive Eq. (9.12) by combining Eqs. (9.7) and...Ch. 9 - A turntable rotates with a constant 2.25 rad/s2...Ch. 9 - A circular saw blade 0.200 m in diameter starts...Ch. 9 - A high-speed flywheel in a motor is spinning at...Ch. 9 - At t = 0 a grinding wheel has an angular velocity...Ch. 9 - A safety device brings the blade of a power mower...Ch. 9 - In a charming 19th-century hotel, an old-style...Ch. 9 - Using Appendix F, along with the fact that the...Ch. 9 - Compact Disc. A compact disc (CD) stores music in...Ch. 9 - A wheel of diameter 40.0 cm starts from rest and...Ch. 9 - You are to design a rotating cylindrical axle to...Ch. 9 - A flywheel with a radius of 0.300 m starts from...Ch. 9 - An electric turntable 0.750 m in diameter is...Ch. 9 - Centrifuge. An advertisement claims that a...Ch. 9 - At t = 3.00 s a point on the rim of a...Ch. 9 - Electric Drill. According to the shop manual, when...Ch. 9 - Four small spheres, each of which you can regard...Ch. 9 - Calculate the moment of inertia of each of the...Ch. 9 - Calculate the moment of inertia of each of the...Ch. 9 - A uniform bar has two small balls glued to its...Ch. 9 - You are a project manager for a manufacturing...Ch. 9 - A wagon wheel is constructed as shown in Fig....Ch. 9 - An airplane propeller is 2.08 m in length (from...Ch. 9 - A compound disk of outside diameter 140.0 cm is...Ch. 9 - A wheel is turning about an axis through its...Ch. 9 - A uniform sphere with mass 28.0 kg and radius...Ch. 9 - A hollow spherical shell has mass 8.20 kg and...Ch. 9 - The flywheel of a gasoline engine is required to...Ch. 9 - You need to design an industrial turntable that is...Ch. 9 - Energy is to be stored in a 70.0-kg flywheel in...Ch. 9 - A light, flexible rope is wrapped several times...Ch. 9 - A frictionless pulley has the shape of a uniform...Ch. 9 - A bucket of mass m is tied to a massless cable...Ch. 9 - CP A thin, light wire is wrapped around the rim of...Ch. 9 - A uniform 2.00-m ladder of mass 9.00 kg is leaning...Ch. 9 - How I Scales. If we multiply all the design...Ch. 9 - Find the moment of inertia of a hoop (a...Ch. 9 - About what axis will a uniform, balsa-wood sphere...Ch. 9 - (a) For the thin rectangular plate shown in part...Ch. 9 - A thin. rectangular sheet of metal has mass M and...Ch. 9 - A thin uniform rod of mass M and length L is bent...Ch. 9 - Prob. 9.53ECh. 9 - CALC Use Eq. (9.20) to calculate the moment of...Ch. 9 - CALC A slender rod with length L has a mass per...Ch. 9 - CALC A uniform disk with radius R = 0.400 m and...Ch. 9 - CP A circular saw blade with radius 0.120 m starts...Ch. 9 - CALC A roller in a printing press turns through an...Ch. 9 - CP CALC A disk of radius 25.0 cm is free to turn...Ch. 9 - You are designing a rotating metal flywheel that...Ch. 9 - You must design a device for shooting a small...Ch. 9 - Engineers are designing a system by which a...Ch. 9 - A vacuum cleaner bell is looped over a shaft of...Ch. 9 - The motor of a table saw is rotating at 3450...Ch. 9 - While riding a multispeed bicycle, the rider can...Ch. 9 - A computer disk drive is turned on starting from...Ch. 9 - It has been argued that power plants should make...Ch. 9 - A uniform disk has radius R0 and mass M0. Its...Ch. 9 - Measuring I. As an intern at an engineering firm,...Ch. 9 - A uniform, solid disk with mass m and radius R is...Ch. 9 - CP A meter stick with a mass of 0.180 kg is...Ch. 9 - A physics student of mass 43.0 kg is standing at...Ch. 9 - A slender rod is 80.0 cm long and has mass 0.120...Ch. 9 - Exactly one turn of a flexible rope with mass m is...Ch. 9 - The pulley in Fig. P9.75 has radius R and a moment...Ch. 9 - The pulley in Fig. P9.76 has radius 0.160 m and...Ch. 9 - Two metal disks, one with radius R1 = 2.50 cm and...Ch. 9 - A thin, light wire is wrapped around the rim of a...Ch. 9 - In the system shown in Fig. 9.17, a 12.0-kg mass...Ch. 9 - In Fig. P9.80, the cylinder and pulley turn...Ch. 9 - BIO The Kinetic Energy of Walking. If a person of...Ch. 9 - Prob. 9.82PCh. 9 - 810 Human Rotational Energy. A dancer is spinning...Ch. 9 - A thin, uniform rod is bent into a square of side...Ch. 9 - Prob. 9.85PCh. 9 - CALC Neutron Stars and Supernova Remnants. The...Ch. 9 - DATA A technician is testing a...Ch. 9 - DATA You are analyzing the motion of a large...Ch. 9 - DATA You are rebuilding a 1965 Chevrolet. To...Ch. 9 - CALC Calculate the moment of inertia of a uniform...Ch. 9 - CALC On a compact disc (CD), music is coded in a...Ch. 9 - BIO THE SPINNING EEL.American eels (Anguilla...Ch. 9 - BIO THE SPINNING EEL. American eels (Anguilla...Ch. 9 - BIO THE SPINNING EEL.American eels (Anguilla...Ch. 9 - THE SPINNING EEL.American eels (Anguilla rostrata)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. The reason we do not have a solar ecli...
Cosmic Perspective Fundamentals
Give at least three examples of key ecosystem services that nature provides for people.
Campbell Biology (11th Edition)
Look at the relative positions of each pair of atoms listed here in the periodic table. How many core electrons...
Organic Chemistry (8th Edition)
Write an equilibrium expression for each chemical equation involving one or more solid or liquid reactants or p...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small conducting spherical shell with inner radius aa and outer radius bb is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. Calculate the magnitude of the electric field in terms of q and the distance rr from the common center of the two shells for r<a. Calculate the magnitude of the electric field for a<r<b. Calculate the magnitude of the electric field for b<r<c.arrow_forwardA cube has sides of length L = 0.800 m . It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by E→=αxi^+βzk^, where α=−3.90 and β= 7.10. What is the sum of the flux through the surface S5 and S6? What is the sum of the flux through the surface S2 and S4? Find the total electric charge inside the cube.arrow_forwardIn the figure, a proton is projected horizontally midway between two parallel plates that are separated by 0.6 cm. The electrical field due to the plates has magnitude 450000 N/C between the plates away from the edges. If the plates are 3 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field.arrow_forward
- A point charge of magnitude q is at the center of a cube with sides of length L. What is the electric flux Φ through each of the six faces of the cube? What would be the flux Φ1 through a face of the cube if its sides were of length L1? Please explain everything.arrow_forwardIf a 1/2 inch diameter drill bit spins at 3000 rotations per minute, how fast is the outer edge moving as it contacts a piece of metal while drilling a machine part?arrow_forwardNeed help with the third question (C)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his hand at an angl reesulting in the reaction force shown.arrow_forward
- Q: What is the direction of the force on the current carrying conductor in the magnetic field in each of the cases 1 to 8 shown below? (1) B B B into page X X X x X X X X (2) B 11 -10° B x I B I out of page (3) I into page (4) B out of page out of page I N N S x X X X I X X X X I (5) (6) (7) (8) Sarrow_forwardQ: What is the direction of the magnetic field at point A, due to the current I in a wire, in each of the cases 1 to 6 shown below? Note: point A is in the plane of the page. ▪A I I ▪A (1) (2) ▪A • I (out of page) (3) ▪A I x I (into page) ▪A ▪A I (4) (5) (6)arrow_forwardA tennis ball is thrown into the air with initial speed vo=46 m/s and angle (theta) 38 degrees from the ground. Find the distance it travels (x) when it hits the ground.arrow_forward
- Problem 04.08 (17 points). Answer the following questions related to the figure below. ථි R₁ www R₂ E R₁ www ли R₁ A Use Kirchhoff's laws to calculate the currents through each battery and resistor in terms of R1, R2, E1, & E2. B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2, which direction is the current flowing through E₁? Through R₂? C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through R2?arrow_forwardA 105- and a 45.0-Q resistor are connected in parallel. When this combination is connected across a battery, the current delivered by the battery is 0.268 A. When the 45.0-resistor is disconnected, the current from the battery drops to 0.0840 A. Determine (a) the emf and (b) the internal resistance of the battery. 10 R2 R₁ ww R₁ Emf 14 Emf Final circuit Initial circuitarrow_forwardA ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License