At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0 rad/s 2 until a circuit breaker trips at t = 2.00 s. From then on, it turns through 432 rad as it coasts to a stop at constant angular acceleration. (a) Through what total angle did the wheel turn between t = 0 and the time it stopped? (b) At what time did it stop? (c) What was its acceleration as it slowed down?
At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0 rad/s 2 until a circuit breaker trips at t = 2.00 s. From then on, it turns through 432 rad as it coasts to a stop at constant angular acceleration. (a) Through what total angle did the wheel turn between t = 0 and the time it stopped? (b) At what time did it stop? (c) What was its acceleration as it slowed down?
At t = 0 a grinding wheel has an angular velocity of 24.0 rad/s. It has a constant angular acceleration of 30.0 rad/s2 until a circuit breaker trips at t = 2.00 s. From then on, it turns through 432 rad as it coasts to a stop at constant angular acceleration. (a) Through what total angle did the wheel turn between t = 0 and the time it stopped? (b) At what time did it stop? (c) What was its acceleration as it slowed down?
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 9 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.