Concept explainers
(a)
Interpretation:
The pH of the given buffer is to be calculated.
Concept Introduction:
The buffer is a solution that resists any change in pH on addition of
(b)
Interpretation:
The pH of the given buffer is to be calculated.
Concept Introduction:
The buffer is a solution that resists any change in pH on addition of
(c)
Interpretation:
The pH of the given buffer is to be calculated.
Concept Introduction:
The buffer is a solution that resists any change in pH on addition of
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Chemistry For Today: General, Organic, And Biochemistry, Loose-leaf Version
- A solution made up of 1.0 M NH3 and 0.50 M (NH4)2SO4 has a pH of 9.26. a Write the net ionic equation that represents the reaction of this solution with a strong acid. b Write the net ionic equation that represents the reaction of this solution with a strong base. c To 100. mL of this solution, 10.0 mL of 1.00 M HCl is added. How many moles of NH3 and NH4+ are present in the reaction system before and after the addition of the HCl? What is the pH of the resulting solution? d Why did the pH change only slightly upon the addition of HCl?arrow_forwardConsider all acid-base indicators discussed in this chapter. Which of these indicators would be suitable for the titration of each of these? (a) NaOH with HClO4 (b) acetic acid with KOH (c) NH3 solution with HBr (d) KOH with HNO3 Explain your choices.arrow_forwardEstimate the pH that results when the following two solutions are mixed. a) 50 mL of 0.3 M CH3COOH and 50 mL of 0.4 M KOH b) 100 mL of 0.3 M CH3COOH and 50 mL of 0.4 M NaOH c) 150 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2 d) 200 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2arrow_forward
- Briefly describe how a buffer solution can control the pH of a solution when strong acid is added and when strong base is added. Use NH3/NH4Cl as an example of a buffer and HCl and NaOH as the strong acid and strong base.arrow_forward. A buffered solution is prepared containing acetic acid, HC2H3O2, and sodium acetate, NaC2H3O2, both at 0.5 M. Write a chemical equation showing how this buffered solution would resist a decrease in its pH if a few drops of aqueous strong acid HCI solution were added to it. Write a chemical equation showing how this buffered solution would resist an increase in its pH if a few drops of aqueous strong base NaOH solution were added to it.arrow_forwardPhenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forward
- Composition diagrams, commonly known as alpha plots, are often used to visualize the species in a solution of an acid or base as the pH is varied. The diagram for 0.100 M acetic acid is shown here. The plot shows how the fraction [alpha ()] of acetic acid in solution, =[CH3CO2H][CH3CO2H]+[CH3CO2] changes as the pH increases (blue curve). (The red curve shows how the fraction of acetate ion, CH3CO2, changes as the pH increases.) Alpha plots are another way of viewing the relative concentrations of acetic acid and acetate ion as a strong base is added to a solution of acetic acid in the course of a titration. (a) Explain why the fraction of acetic acid declines and that of acetate ion increases as the pH increases. (b) Which species predominates at a pH of 4, acetic acid or acetate ion? What is the situation at a pH of 6? (c) Consider the point where the two lines cross. The fraction of acetic acid in the solution is 0.5, and so is that of acetate ion. That is, the solution is half acid and half conjugate base; their concentrations are equal. At this point, the graph shows the pH is 4.74. Explain why the pH at this point is 4 74.arrow_forwardMethylammonium chloride is a salt of methylamine, CH3NH2. A 0.10 M solution of this salt has a pH of 5.82. a Calculate the value for the equilibrium constant for the reaction CH3NH3++H2OCH3NH2+H3O+ b What is the Kb value for methylamine? c What is the pH of a solution in which 0.450 mol of solid methylammonium chloride is added to 1.00 L of a 0.250 M solution of methylamine? Assume no volume change.arrow_forwardWrite an equation for each of the following buffering actions. a. the response of a HPO42/PO43 buffer to the addition of OH ions b. the response of a HF/F buffer to the addition of OH ions c. the response of a HCN/CN buffer to the addition of H3O+ ions d. the response of a H3PO4/H2PO4 buffer to the addition of H3O+ ionsarrow_forward
- The base ethylamine (CH3CH2NH2) has a Kb of. A closely related base, ethanolamine(HOCH2CH2NH2), has a Kb of 3.2105. (a) Which of the two bases is stronger? (b) Calculate the pH of a 0.10M solution of the strong base?arrow_forward1. Which choice would be a good buffer solution? 0.20 M KCH3CO2 and 0.20 M CH3CO2H 0.20 M HCl and 0.10 M KOH 0.20 M CH3CO2H and 0.10 M HCO2H 0.10 HCl and 0.010 M KClarrow_forwardWhat is meant by the presence of a common ion? How does the presence of a common ion affect an equilibrium such as HNO2(aq) H+(aq) + NO2-(aq) What is an acidbase solution called that contains a common ion?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning