
Concept explainers
(a)
Interpretation: The electronic configuration, bond order and the ionic species that can exist is to be predicted from given molecular ions.
Concept introduction: When two atomic orbitals come close to each other they lose their identity and form new pair of orbitals knows as molecular orbitals. Among the two molecular orbitals formed one has energy lower than the atomic orbitals is known as bonding molecular orbital and the other has energy higher than the atomic orbitals and is known as antibonding molecular orbital.
To determine: The orbital electronic configuration of the given ionic species.
(a)

Answer to Problem 9.103QP
Solution
The electronic configuration of molecular species is given as follows.
Explanation of Solution
Explanation
Nitrogen has five valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
Oxygen has six valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
Carbon has four valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
Bromine has seven valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
(b)
To determine: The bond order of given molecular ionic species.
(b)

Answer to Problem 9.103QP
Solution
All the given molecular ionic species except
Explanation of Solution
Explanation
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
(c)
To determine: The molecular ion species that are expected to exist
(c)

Answer to Problem 9.103QP
Solution
All the molecular species except
Explanation of Solution
Explanation
The bond order of a molecule is in direct proportion with its stability. Higher the bond order higher is the stability of the molecule.
Molecular species with nonzero bond order are expected to exist. All the given molecular ions except
Conclusion
The molecular species with nonzero bond order are expected to exist.
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry: The Science in Context (Fifth Edition)
- 6. In an experiment the following replicate set of volume measurements (cm3) was recorded: (25.35, 25.80, 25.28, 25.50, 25.45, 25.43) A. Calculate the mean of the raw data. B. Using the rejection quotient (Q-test) reject any questionable results. C. Recalculate the mean and compare it with the value obtained in 2(a).arrow_forwardA student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. • If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T G OH де OH This transformation can't be done in one step.arrow_forwardMacmillan Leaming Draw the major organic product of the reaction. 1. CH3CH2MgBr 2. H+ - G Select Draw Templates More H о QQarrow_forward
- Draw the condensed structure of 3-hydroxy-2-butanone. Click anywhere to draw the first atom of your structure.arrow_forwardGive the expected major product of reaction of 2,2-dimethylcyclopropane with each of the following reagents. 2. Reaction with dilute H₂SO, in methanol. Select Draw Templates More CHC Erase QQQ c. Reaction with dilute aqueous HBr. Select Drew Templates More Era c QQQ b. Reaction with NaOCH, in methanol. Select Draw Templates More d. Reaction with concentrated HBr. Select Draw Templates More En a QQQ e. Reaction with CH, Mg1, then H*, H₂O 1. Reaction with CH,Li, then H', H₂Oarrow_forwardWrite the systematic name of each organic molecule: structure O OH OH name X ☐arrow_forward
- Macmillan Learning One of the molecules shown can be made using the Williamson ether synthesis. Identify the ether and draw the starting materials. А со C Strategy: Review the reagents, mechanism and steps of the Williamson ether synthesis. Determine which of the molecules can be made using the steps. Then analyze the two possible disconnection strategies and deduce the starting materials. Identify the superior route. Step 6: Put it all together. Complete the two-step synthesis by selecting the reagents and starting materials. C 1. 2. Answer Bank NaH NaOH NaOCH, снен, сен, он Сиси, Сне (СН), СОН (Сн, Свarrow_forwardWrite the systematic name of each organic molecule: structure CH3 O CH3-CH-CH-C-CH3 OH HV. CH3-C-CH-CH2-CH3 OH CH3 O HO—CH, CH–CH—C CH3 OH 오-오 name X G ☐arrow_forwardHI Organic Functional Groups Predicting the reactants or products of esterification What is the missing reactant in this organic reaction? HO OH H +回 + H₂O 60013 Naomi V Specifically, in the drawing area below draw the skeletal ("line") structure of R. If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answer box under the drawing area. No answer Click and drag to start drawing a structure. Explanation Check 1 2 #3 $ 4 2025 % ala5 'a :☐ G & 67 8 Ar K enter Accessible 9 Q W E R TY U 1 tab , S H J Karrow_forward
- Please help me with number 5 using my data and graph. I think I might have number 3 and 4 but if possible please check me. Thanks in advance!arrow_forwarddict the major products of this organic reaction. C Explanation Check 90 + 1.0₂ 3 2. (CH3)2S Click and drag f drawing a stru © 2025 McGraw Hill LLC. All Rights Reserved. • 22 4 5 7 8 Y W E R S F H Bilarrow_forwardcan someone draw out the reaction mechanism for this reaction showing all the curly arrows and 2. Draw the GPNA molecule and identify the phenylalanine portion. 3. Draw L-phenylalanine with the correct stereochemistryarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





