(a)
The percent of total kinetic energy of a sphere is its translational kinetic energy.
(a)
Answer to Problem 84P
Explanation of Solution
Given:
A uniform sphere is rolling without friction.
Formula used:
The total kinetic energy is sum of translational kinetic energy and rotational kinetic energy is given as:
Where, m is the mass, v is the velocity, I is the moment of inertia and
Calculation:
Translational Kinetic energy of sphere
Kinetic energy of an object is the sum of its rotational kinetic energy and translational kinetic energy which can be determined as follows
The ratio of translational kinetic energy and rotational kinetic energy is given as
For sphere,
Therefore,
Conclusion:
71.4% percentage of a sphere total kinetic energy is its translational kinetic energy
(b)
The percent of kinetic energy is translational kinetic energy of a uniform cylinder.
(b)
Answer to Problem 84P
66.7%
Explanation of Solution
Given:
Uniform Cylinder is rolling without friction.
Formula used:
The total kinetic energy is sum of translational kinetic energy and rotational kinetic energy is given as:
Where, m is the mass, v is the velocity, I is the moment of inertia and
Calculation:
Translational Kinetic energy of uniform cylinder
Kinetic energy of an object is the sum of its rotational kinetic energy and translational kinetic energy which can be determined as follows
The ratio of translational kinetic energy and rotational kinetic energy is given as
For uniform cylinder
Therefore,
Conclusion:
66.7% percentage of a uniform cylinder total kinetic energy is its translational kinetic energy
(c)
The percent of total kinetic energy of a hoop is its translational kinetic energy.
(c)
Answer to Problem 84P
50%
Explanation of Solution
Given:
Hoop is rolling without friction
Formula used:
The total kinetic energy is sum of translational kinetic energy and rotational kinetic energy is given as:
Where, m is the mass, v is the velocity, I is the moment of inertia and
Calculation:
Translational Kinetic energy of a hoop
Kinetic energy of an object is the sum of its rotational kinetic energy and translational kinetic energy which can be determined as follows
The ratio of translational kinetic energy and rotational kinetic energy is given as
For hoop
Therefore,
Conclusion:
50.0% percentage of a sphere total kinetic energy is its translational kinetic energy
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers
- A turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardA disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardRigid rods of negligible mass lying along the y axis connect three particles (Fig. P10.18). The system rotates about the x axis with an angular speed of 2.00 rad/s. Find (a) the moment of inertia about the x axis, (b) the total rotational kinetic energy evaluated from 12I2, (c) the tangential speed of each particle, and (d) the total kinetic energy evaluated from 12mivi2. (e) Compare the answers for kinetic energy in parts (b) and (d). Figure P10.18arrow_forward
- Consider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardTwo spheres, one hollow and one solid, are rotating with the same angular speed around an axis through their centers. Both spheres have the same mass and radius. Which sphere, if either, has the higher rotational kinetic energy? (a) The hollow I sphere, (b) The solid sphere, (c) They have the same kinetic energy.arrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forward
- Two astronauts (Fig. P10.67), each having a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one astronaut shortens the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardTwo astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardA tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.62. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the balls speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the balls speed as it leaves the track at the bottom. What If? (d) Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Would its speed then be higher, lower, or the same at the top of the loop? (e) Explain your answer to part (d). Figure P10.62arrow_forward
- A solid, uniform disk of radius 0.250 m and mass 55.0 kg rolls down a ramp of length 4.50 m that makes an angle of 15.0 with the horizontal. The disk starts from rest from the top of the ramp. Find (a) the speed of the disks center of mass when it reaches the bottom of the ramp and (b) the angular speed of the disk at the bottom of the ramp.arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardA war-wolf, or trebuchet, is a device used during the Middle Ages to throw rocks at castles and now sometimes used to fling large vegetables and pianos as a sport. A simple trebuchet is shown in Figure P10.19. Model it as a stiff rod of negligible mass, 3.00 m long, joining particles of mass m1 = 0.120 kg and m2 = 60.0 kg at its ends. It can turn on a frictionless, horizontal axle perpendicular to the rod and 14.0 cm from the large-mass particle. The operator releases the trebuchet from rest in a horizontal orientation. (a) Find the maximum speed that the small-mass object attains. (b) While the small-mass object is gaining speed, does it move with constant acceleration? (c) Does it move with constant tangential acceleration? (d) Does the trebuchet move with constant angular acceleration? (e) Does it have constant momentum? (f) Does the trebuchetEarth system have constant mechanical energy?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College