
Concept explainers
(a)
Percentage difference between the moment of inertia in two cases.
(a)

Explanation of Solution
Given:
Diameter of each sphere
Radius of sphere
Length of the rod
Mass of each sphere
Mass of each rod
Moment of inertia of each sphere about its center of mass
Moment of inertia of each sphere about axis of rotation
Moment of inertia of rod about axis of rotation
Distance of center of each sphere from axis of rotation
Moment of inertia of the system when spheres are treated as particle
Moment of inertia of the system
Percentage difference
Formula Used:
Moment of inertia of each sphere about its center of mass is given as
Moment of inertia of rod about its center of mass is given as
According to parallel axis theorem, moment of inertia about the axis of rotation is given as
Where, d is the distance between center of mass and axis of rotation.
Percentage difference in the moment of inertia is given as
Calculation:
Case 1:
Consider the two spheres as point particles and mass of the rod negligible.
Distance of center of each sphere from axis of rotation is given as
Moment of inertia of the system is given as
Case 2:
Moment of inertia of each sphere about its center of mass is given as
Using parallel axis theorem, moment of inertia of each sphere about axis of rotation is given as
Moment of inertia of rod about its center of mass is given as
Moment of inertia of the system is given as
Percentage difference in the moment of inertia is given as
Conclusion:
Hence, Percentage difference in the moment of inertia is
(b)
The moment of inertia of system will change if solid sphere is replaced with hollow shell.
(b)

Explanation of Solution
Given:
Diameter of each sphere
Radius of sphere
Length of the rod
Mass of each sphere
Mass of each rod
Moment of inertia of each sphere about its center of mass
Moment of inertia of each sphere about axis of rotation
Moment of inertia of rod about axis of rotation
Distance of center of each sphere from axis of rotation
Moment of inertia of the system
Formula Used:
Moment of inertia of each sphere about its center of mass is given as
Moment of inertia of rod about its center of mass is given as
According to parallel axis theorem, Moment of inertia about the axis of rotation is given as
Where, d is the distance between center of mass and axis of rotation.
Calculation:
Moment of inertia of each hollow sphere about its center of mass is given as
Using parallel axis theorem, moment of inertia of each hollow sphere about axis of rotation is given as
Moment of inertia of rod about its center of mass is given as
Moment of inertia of the system is given as
Conclusion:
Hence, the moment of inertia of the system increases.
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers
- choosing East (e) is not correct!arrow_forwarddisks have planes that are parallel and centered Three polarizing On a common axis. The direction of the transmission axis Colish dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with int intensity So = 790 W/m². Calculate the transmitted intensity if 81=28.0° O2-35.0°, and O3 = 40.0° w/m² horizontal Өз 02arrow_forwardA polarized light is incident on several polarizing disks whose planes are parallel and centered on common axis. Suppose that the transmission axis of the first polarizer is rotated 20° relative to the axis of polarization of the incident and that the transmission axis of each exis of light, additional analyzer is rotated 20° relative to the transmission axis the previous one. What is the minimum number of polarizer needed (whole number), so the transmitted light through all polarizing sheets has an Striking intensity that is less then 10% that the first polarizer?arrow_forward
- A high energy pulsed laser emits 1.5 nano second-long pulse of average power 1.80x10" W. The beam is cylindrical with 2.00 mm in radius. Determine the rms value of the B-field? -Tarrow_forwardA 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?arrow_forwardThe average intensity of light emerging from a polarizing sheet is. 0.550 W/m², and the average intensity of the horizontally polarized light incident on the sheet is 0.940 W/m². Determine the angle that the transmission axis of the polarizing sheet makes with the horizontalarrow_forward
- we measure an At a particular moment in time and space, electromagnetic wave's electric and magnetic fields. We find the electric field & pointing North and the magnetic field B pointing Down. What is the direction of wave propagation? a. South b. West C. c. Up d. Down e. East f. North.arrow_forwardHello, please help with how to calculate impact velocity and rebound velocity. Thanks!arrow_forwardA object of mass 3.00 kg is subject to a force FX that varies with position as in the figure below. Fx (N) 4 3 2 1 x(m) 2 4 6 8 10 12 14 16 18 20 i (a) Find the work done by the force on the object as it moves from x = 0 to x = 5.00 m. J (b) Find the work done by the force on the object as it moves from x = 5.00 m to x = 11.0 m. ] (c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 18.0 m. J (d) If the object has a speed of 0.400 m/s at x = 0, find its speed at x = 5.00 m and its speed at x speed at x = 5.00 m speed at x = 18.0 m m/s m/s = 18.0 m.arrow_forward
- An EL NIÑO usually results in Question 8Select one: a. less rainfall for Australia. b. warmer water in the western Pacific. c. all of the above. d. none of the above. e. more rainfall for South America.arrow_forwardA child's pogo stick (figure below) stores energy in a spring (k = 2.05 × 104 N/m). At position (✗₁ = -0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position ® (x = 0), the spring is relaxed and the child is moving upward. At position child is again momentarily at rest at the top of the jump. Assume that the combined mass of child and pogo stick is 20.0 kg. B A (a) Calculate the total energy of the system if both potential energies are zero at x = 0. (b) Determine X2- m (c) Calculate the speed of the child at x = 0. m/s (d) Determine the value of x for which the kinetic energy of the system is a maximum. mm (e) Obtain the child's maximum upward speed. m/s thearrow_forwardAn EL NIÑO usually results in Question 8Select one: a. less rainfall for Australia. b. warmer water in the western Pacific. c. all of the above. d. none of the above. e. more rainfall for South America.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





