Concept explainers
(a)
Percentage difference between the moment of inertia in two cases.
(a)
Explanation of Solution
Given:
Diameter of each sphere
Radius of sphere
Length of the rod
Mass of each sphere
Mass of each rod
Moment of inertia of each sphere about its center of mass
Moment of inertia of each sphere about axis of rotation
Moment of inertia of rod about axis of rotation
Distance of center of each sphere from axis of rotation
Moment of inertia of the system when spheres are treated as particle
Moment of inertia of the system
Percentage difference
Formula Used:
Moment of inertia of each sphere about its center of mass is given as
Moment of inertia of rod about its center of mass is given as
According to parallel axis theorem, moment of inertia about the axis of rotation is given as
Where, d is the distance between center of mass and axis of rotation.
Percentage difference in the moment of inertia is given as
Calculation:
Case 1:
Consider the two spheres as point particles and mass of the rod negligible.
Distance of center of each sphere from axis of rotation is given as
Moment of inertia of the system is given as
Case 2:
Moment of inertia of each sphere about its center of mass is given as
Using parallel axis theorem, moment of inertia of each sphere about axis of rotation is given as
Moment of inertia of rod about its center of mass is given as
Moment of inertia of the system is given as
Percentage difference in the moment of inertia is given as
Conclusion:
Hence, Percentage difference in the moment of inertia is
(b)
The moment of inertia of system will change if solid sphere is replaced with hollow shell.
(b)
Explanation of Solution
Given:
Diameter of each sphere
Radius of sphere
Length of the rod
Mass of each sphere
Mass of each rod
Moment of inertia of each sphere about its center of mass
Moment of inertia of each sphere about axis of rotation
Moment of inertia of rod about axis of rotation
Distance of center of each sphere from axis of rotation
Moment of inertia of the system
Formula Used:
Moment of inertia of each sphere about its center of mass is given as
Moment of inertia of rod about its center of mass is given as
According to parallel axis theorem, Moment of inertia about the axis of rotation is given as
Where, d is the distance between center of mass and axis of rotation.
Calculation:
Moment of inertia of each hollow sphere about its center of mass is given as
Using parallel axis theorem, moment of inertia of each hollow sphere about axis of rotation is given as
Moment of inertia of rod about its center of mass is given as
Moment of inertia of the system is given as
Conclusion:
Hence, the moment of inertia of the system increases.
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers
- A buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardA system of point particles is rotating about a fixed axis at 4 rev/s. The particles are fixed with respect to each other. The masses and distances to the axis of the point particles are m1=0.1kg , r1=0.2m , m2=0.05kg , r2=0.4m , m3=0.5kg , r3=0.01m . (a) What is the moment of inertia of the system? (b) What is the rotational kinetic energy of the system?arrow_forwardThe centrifuge at NASA Ames Research Center has a radius of 8.8 m and can produce farces on its payload of 20 gs or 20 times the force of gravity on Earth. (a) What is the angular momentum of a 20-kg payload that experiences 10 gs in the centrifuge? (b) If the driver motor was turned off in (a) and the payload lost 10 kg, what would be its new spin rate, taking into account there are no frictional forces present?arrow_forward
- A long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic energy?arrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forward
- Suppose a child walks from the outer edge of a rotating merry-go-round to the inside. Does the angular velocity of the merry-go-round increase, decrease, or remain the same? Explain your answer. Assume the merry-go-round is spinning without friction.arrow_forwardThe blades of a wind turbine are 30 m in length and rotate at a maximum rotation rate of 20 rev/min. (a) If the blades are 6000 kg each and the rotor assembly has three blades, calculate the angular momentum of the turbine at this rotation rate. (b) What Is the torque require to rotate the blades up to the maximum rotation rate in 5 minutes?arrow_forwardIf a particle is moving with respect to a chosen origin it has linear momentum. What conditions must exist for this particle’s angular momentum to be zero about the chosen origin?arrow_forward
- While punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75kgm2 and its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the punter’s shoe if it is 1.05 m from the hip joint?arrow_forwardCalculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. b) The skater with arms extended is approximated by a cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like rods rotated about their ends.arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning