Concept explainers
(a)
The angular speed of the ball just after the blow.
(a)
Answer to Problem 106P
Explanation of Solution
Given: The horizontal force applied on a billiard ball at a distance
Speed of the ball just after the blow is
The coefficient of kinetic friction between the ball and billiard table is
Formula Used:
Newton’s second law of motion in rotational form
Calculation:
FIGURE: 1
Applying Newton’s second law in rotational form to ball,
Where,
Moment of inertia with respect to an axis through the center of mass of the ball is
Substituting this in equation
Applying impulse-momentum theorem to the ball,
Where,
From equation
Substituting the expression for
Substituting
Conclusion:
The angular speed of the ball just after the blow is
(b)
The speed of the ball once it begins to roll without slipping.
(b)
Answer to Problem 106P
Explanation of Solution
Given: Speed of the ball just after the blow is
The coefficient of kinetic friction between the ball and billiard table is
Formula Used:
FIGURE: 2
Referring to the force diagram shown in figure 2, applying Newton’s second law to the ball when it is rolling without slipping,
And
Where,
But,
Where,
Calculations:
From equation
Substituting this in equation
From equation
Moment of inertia with respect to an axis through the center of mass of the ball is
Substituting for
Now let us write constant-acceleration equation that connects angular speed of the ball to the angular acceleration and time,
Now,substituting the expression for
Constant acceleration equation that relates the speed of the ball to the acceleration and time,
Where,
Substituting for
Imposing the condition for rolling the ball without slipping,
Substituting this
Conclusion:
The speed of the ball once it begins to roll without slipping is
(c)
The kinetic energy of the ball just after the hit.
(c)
Answer to Problem 106P
Explanation of Solution
Given: The horizontal force applied on a billiard ball at a distance
Speed of the ball just after the blow is
The coefficient of kinetic friction between the ball and billiard table is
Formula Used:
Initial kinetic energy of the ball can be written as,
Where,
Substituting the expressions for
Where,
Moment of inertia,
Substituting these in equation
Conclusion:
The kinetic energy of the ball just after the hit is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers
- The landmass of Sokovia lifted in the air in Avengers: Age of Ultron had a volume of about 1.98 km3. What volume is that in m3?arrow_forwardA fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is exactly 6.00 ft in length. Take the distance from Earth to the Moon to be 252,000 miles, and use the given approximation to find the distance in fathoms. 1 mile = 5280 ft. (Answer in sig fig.)arrow_forwardNo chatgpt pls will upvotearrow_forward
- One of the earliest video games to have a plot, Zork, measured distances in “Bloits” where 1 Bloit was defined as the distance the king’s favorite pet could run in one hour, 1,090 m. In the same game the king has a statue made that is 9.00 Bloits high. What is this in meters?arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Defination of voltagearrow_forwardAt point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?arrow_forwardMake a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).arrow_forward
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning