(a)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted
alkene , in presence of strong base (not bulky) leads to more substituted alkene. - Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(b)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(c)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(d)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(e)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(f)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(g)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(h)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(i)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(j)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(k)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
- Write the electron configuration of an atom of the element highlighted in this outline of the Periodic Table: 1 23 4 569 7 He Ne Ar Kr Xe Rn Hint: you do not need to know the name or symbol of the highlighted element! §arrow_forwardIdentify the amino acids by name. Illustrate a titration curve for this tetrapeptide indicating the pKa's for each ionizable groups and identify the pI for this tetrapeptide. please helparrow_forward↓ ina xSign x Sign X labs X Intro X Cop Xa chat X My Cx Grac X Laur x Laur xash learning.com/ihub/assessment/f188d950-dd73-11e0-9572-0800200c9a66/d591b3f2-d5f7-4983-843c-0d00c1c0340b/f2b47861-07c4-4d1b-a1ee-e7db2 +949 pts /3400 K Question 16 of 34 > © Macmillan Learning Draw the major E2 reaction product formed when cis-1-chloro-2-ethylcyclohexane (shown) reacts with hydroxide ion in DMSO. H CH2CH3 H H HO- H H H Cl DMSO H H C Select Draw Templates More C H 0 2 Erasearrow_forward
- A common buffer for stabilizing antibodies is 100 mM Histidine at pH 7.0. Describe the preparation of this buffer beginning with L-Histidine monohydrochloride monohydrate and 1 M NaOH. Be certain to show the buffering reaction that includes the conjugate acid and base.arrow_forwardFina x | Sign X Sign X lab: X Intro X Cop) X a chat x My x Grad xLaur x Laur x a sheg X S Shoj XS SHE X acmillanlearning.com/ihub/assessment/f188d950-dd73-11e0-9572-0800200c9a66/d591b3f2-d5f7-4983-843c-0d00c1c0340b/f2b47861-07c4-4d1b-a1ee-e7db27d6b4ee?actualCourseld=d591b3f2- 5 © Macmillan Learning Organic Chemistry Maxwell presented by Macmillan Learning For the dehydrohalogenation (E2) reaction shown, draw the Zaitsev product, showing the stereochemistry clearly. H H KOH Br EtOH Heat Select Draw Templates More Erase // C H Q Search hp Q2 Q Δ קו Resouarrow_forwardIs the structural form shown possible given the pKa constraints of the side chains?arrow_forward
- on x Fina X Sign X Sign x lab X Intro X Cop X chat X My x Grac x Laur x Laur x ashes x S Shox S SHE x a eve.macmillanlearning.com/ihub/assessment/f188d950-dd73-11e0-9572-0800200c9a66/d591b3f2-d5f7-4983-843c-0d00c1c0340b/f2b47861-07c4-4d1b-a1ee-e7db27d6b4ee?actualCourseld=d591b3f2-c stions estion. ct each urces. +95 Macmillan Learning Draw the product formed by the reaction of potassium t-butoxide with (15,25)-1-bromo-2-methyl-1-phenylbutane (shown). Clearly show the stereochemistry of the product. H BH (CH3)3CO-K+ +100 H3CW (CH3)3COH +85 H3CH2C +95 ossible ↓ Q Search Select Draw Templates More C H 0 bp A Erase 2Q 112 Resouarrow_forwardIdentify the structure of the PTH derivative generated after two rounds of Edman degradation.arrow_forwardUse the data below from an electron impact mass spectrum of a pure compound to deduce its structure. Draw your structure in the drawing window. Data selected from the NIST WebBook, https://webbook.nist.gov/chemistry/ m/z Relative intensity 31 0.5 30 26 29 22 28 100 27 33 26 23 15 4 • You do not have to consider stereochemistry. You do not have to explicitly draw H atoms. • In cases where there is more than one answer, just draw one. 妊 n ? Previous Nextarrow_forward
- for this question. Write the molecular formula for a compound with the possible elements C, H, N and O that exhibits a molecular ion at M+ = 98.1106. Exact Masses of the Most Abundant Isotope of Selected Elements Isotope Natural abundance (%) Exact mass 1H 99.985 1.008 12C 98.90 12.000 14N 99.63 14.003 160 99.76 15.995 Molecular formula (In the order CHNO, with no subscripts)arrow_forwardPLEASE READ!!! I DONT WANT EXAMPLES, I DONT WANT WORDS OR PARAGRAPHS!!! PLEASE I UNDERSTAND THE BASICS BUT THIS IS AN EXCEPTION THAT EVEN THE INTERNET CANT HELP!!!! THIS IS THE THIRD TIME I'VE SENT THOSE QUESTIONS SO PLEASE DONT RESEND THE SAME STUFF, ITS NOT HELPING ME!!! I ALSO ALREADY TRIED TO DRAW THE MECHANISM MYSELF, SO IF ITS RIGHT PLEASE TELL ME OR TELL ME WHAT I HAVE TO CHANGE!!! First image: I have to SHOW (DRAWING) the mechanism (with arows and structures of molecules) NOT WORDS PLEASE! of the reaction at the bottom. Also I have to show by mecanism why the reaction wouldn't work if the alcohol was primary Second image: I have to show the mechanism (IMAGE) (with arrows and structures of the molecules) NOT WORDS PLEASE !! for the reaction on the left, where the alcohol A is added fast in one portion HOMEWORK, NOT EXAM!! ALL DETAILS ARE IN THE IMAGES PLEASE LOOK AT THE IMAGES, DONT LOOK AT THE AI GENERATED TEXT!!!arrow_forwardWrite the molecular formula for a compound with the possible elements C, H, N and O that exhibits a molecular ion at M+ = 85.0899. Exact Masses of the Most Abundant Isotope of Selected Elements Isotope Natural abundance (%) Exact mass 1H 99.985 1.008 12C 98.90 12.000 14N 99.63 14.003 160 99.76 15.995 Molecular formula (In the order CHNO, with no subscripts)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





