The wavelength of the light emitted by Aluminium phosphide diode has to be calculated. Concept introduction: According to Band theory of solids, the energy levels of a substance are imagined as “bands”. There are two types of bands – valence band and conduction band. Low lying bands are valence band and conduction band where the conduction takes place, lies above the valence band. The energy gap between the valence band and conduction band is called “band gap”. The energy gap can be represented by Planck’s equation, E = hν where ν = c λ E = energy h = Planck's constant ν = frequency c = velocity of light λ = wavelength
The wavelength of the light emitted by Aluminium phosphide diode has to be calculated. Concept introduction: According to Band theory of solids, the energy levels of a substance are imagined as “bands”. There are two types of bands – valence band and conduction band. Low lying bands are valence band and conduction band where the conduction takes place, lies above the valence band. The energy gap between the valence band and conduction band is called “band gap”. The energy gap can be represented by Planck’s equation, E = hν where ν = c λ E = energy h = Planck's constant ν = frequency c = velocity of light λ = wavelength
Solution Summary: The author explains that the wavelength of the light emitted by Aluminium phosphide diode has to be calculated. The energy gap between the valence band and conduction band is represented by Planck’s equation
The wavelength of the light emitted by Aluminium phosphide diode has to be calculated.
Concept introduction:
According to Band theory of solids, the energy levels of a substance are imagined as “bands”. There are two types of bands – valence band and conduction band. Low lying bands are valence band and conduction band where the conduction takes place, lies above the valence band. The energy gap between the valence band and conduction band is called “band gap”. The energy gap can be represented by Planck’s equation,
3.
2.
1.
On the graph below, plot the volume of rain in milliliters versus its height in centimeters for the 400 mL beaker. Draw a
straight line through the points and label it "400 mL beaker."
Volume (mL)
400
350
300
250
200
150
750 mL
Florence
Volume Versus Height of Water
400 mL
beaker
100
50
0
0
2 3
4
5
Height (cm)
6 7 8 9 10
Explain why the data points for the beaker lie roughly on a straight line. What kind of relationship is this? How do you know?
(see page 276 text) the design of the beaker is a uniform cylinder
the volume of liquid increases evenly with its height
resulting in a linear relationship.
What volume would you predict for 10.0 cm of water? Explain how you arrived at your answer. Use the data table and the
graph to assist you in answering the question.
4. Plot the volume of rain in milliliters versus its height in centimeters for the 250 mL Florence flask on the same graph. Draw a
best-fit curve through the points and label it "250 mL Florence flask."
oke came
Show work. Don't give Ai generated solution
In the video, we looked at the absorbance of a certain substance and how it varies
depending on what wavelength of light we are looking at. Below is a similar scan of a
different substance. What color BEST describes how this substance will appear?
Absorbance (AU)
Violet
Blue
Green
Orange
1.2
1.0-
0.8-
0.6-
0.4-
0.2
0.0
450
500
550
600
650
700
Wavelength (nm)
violet
indigo
blue
green
yellow orange
red
Red
O Cannot tell from this information
In the above graph, what causes -450 nm wavelength of light to have a higher
absorbance than light with a -550 nm wavelength? Check all that are true.
The distance the light travels is different
The different data points are for different substances
The concentration is different at different times in the experiment
Epsilon (molar absortivity) is different at different wavelengths
Chapter 9 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card