The wavelength of the light emitted by Aluminium phosphide diode has to be calculated. Concept introduction: According to Band theory of solids, the energy levels of a substance are imagined as “bands”. There are two types of bands – valence band and conduction band. Low lying bands are valence band and conduction band where the conduction takes place, lies above the valence band. The energy gap between the valence band and conduction band is called “band gap”. The energy gap can be represented by Planck’s equation, E = hν where ν = c λ E = energy h = Planck's constant ν = frequency c = velocity of light λ = wavelength
The wavelength of the light emitted by Aluminium phosphide diode has to be calculated. Concept introduction: According to Band theory of solids, the energy levels of a substance are imagined as “bands”. There are two types of bands – valence band and conduction band. Low lying bands are valence band and conduction band where the conduction takes place, lies above the valence band. The energy gap between the valence band and conduction band is called “band gap”. The energy gap can be represented by Planck’s equation, E = hν where ν = c λ E = energy h = Planck's constant ν = frequency c = velocity of light λ = wavelength
Solution Summary: The author explains that the wavelength of the light emitted by Aluminium phosphide diode has to be calculated. The energy gap between the valence band and conduction band is represented by Planck’s equation
The wavelength of the light emitted by Aluminium phosphide diode has to be calculated.
Concept introduction:
According to Band theory of solids, the energy levels of a substance are imagined as “bands”. There are two types of bands – valence band and conduction band. Low lying bands are valence band and conduction band where the conduction takes place, lies above the valence band. The energy gap between the valence band and conduction band is called “band gap”. The energy gap can be represented by Planck’s equation,
Silicon (Si) and germanium (Ge) can be used as semiconducting materials. The band gap between the conduction band and valence band is measured in electron volts, eV. 1 eV = 1.6022 × 10⁻¹⁹J. The band gap of each semiconductor was measured, and the two values were found to be 0.69 eV and 1.12 eV. Which of the two values belongs to Ge?
A) 0.69 eV
B) 1.12 eV
C) Cannot be determined without further information.
9. The density of Al is 2.7 g/cm³ and that of Al2O; is about 4 g/cm³. Describe the characteristics of the
aluminum-oxide film. Compare with the oxide film that forms on tungsten. The density of W is 19.254
g/cm and that of WO; is 7.3 g/cm.
In terms of electron energy band structure, discuss the differences in optically transparent, translucent and opaque materials.
Chapter 9 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card