Showers According to home-water-works.org, the average shower in the United States lasts 8.2 minutes. Assume this is correct, and assume the standard deviation of 2 minutes. a. Do you expect the shape of the distribution of shower lengths to be Normal, right-skewed, or left-skewed? Explain. b. Suppose that we survey a random sample of 100 people to find the length of their last shower. We calculate the mean length from the sample and record the value. We repeat this 500 times. What will be the shape of the distribution of these sample means? c. Refer to part b. What will be the mean and the standard deviation of the distribution of these sample means?
Showers According to home-water-works.org, the average shower in the United States lasts 8.2 minutes. Assume this is correct, and assume the standard deviation of 2 minutes. a. Do you expect the shape of the distribution of shower lengths to be Normal, right-skewed, or left-skewed? Explain. b. Suppose that we survey a random sample of 100 people to find the length of their last shower. We calculate the mean length from the sample and record the value. We repeat this 500 times. What will be the shape of the distribution of these sample means? c. Refer to part b. What will be the mean and the standard deviation of the distribution of these sample means?
Showers According to home-water-works.org, the average shower in the United States lasts 8.2 minutes. Assume this is correct, and assume the standard deviation of 2 minutes.
a. Do you expect the shape of the distribution of shower lengths to be Normal, right-skewed, or left-skewed? Explain.
b. Suppose that we survey a random sample of 100 people to find the length of their last shower. We calculate the mean length from the sample and record the value. We repeat this 500 times. What will be the shape of the distribution of these sample means?
c. Refer to part b. What will be the mean and the standard deviation of the distribution of these sample means?
Features Features Normal distribution is characterized by two parameters, mean (µ) and standard deviation (σ). When graphed, the mean represents the center of the bell curve and the graph is perfectly symmetric about the center. The mean, median, and mode are all equal for a normal distribution. The standard deviation measures the data's spread from the center. The higher the standard deviation, the more the data is spread out and the flatter the bell curve looks. Variance is another commonly used measure of the spread of the distribution and is equal to the square of the standard deviation.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.