![Principles of Physics: A Calculus-Based Text](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_largeCoverImage.gif)
Concept explainers
(a)
To show: The acceleration of the particle in the
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 56P
The acceleration of the particle in the
Explanation of Solution
The formula to calculate the relative momentum is,
Here,
The formula to calculate the force on the electric charge is,
Here,
The formula to calculate the Force due to motion is,
The force on the electric charge due to motion must be equal to that of the force due to electric field.
Substitute
Substitute
Further solve the above equation.
The formula to calculate the acceleration is,
Substitute
Conclusion
Therefore, the acceleration of the particle in the
(b)
The significance of the dependence of the acceleration on the speed.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 56P
The significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the
Explanation of Solution
The formula to calculate the acceleration of the charge is,
As the speed of charge approaches to the speed of light, the acceleration approaches to zero.
When the speed of the charge is very small as compared to that of the speed of the light the above equation can be transformed.
So the relative expression is transformed to the classical expression when the speed of the charge is very small as compared to that of the speed of the light.
Conclusion
Therefore, the significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.
(c)
The speed and the position of the charge particle at time
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 56P
The speed of the charge particle at time
Explanation of Solution
The formula to calculate the acceleration of the charge is,
Integrate the above equation from velocity
Thus the speed of the particle at time
The formula to calculate the position of the particle is,
Substitute
Integrate the above equation from position
Conclusion
Therefore, the speed of the charge particle at time
Want to see more full solutions like this?
Chapter 9 Solutions
Principles of Physics: A Calculus-Based Text
- please solve and answer the question correctly. Thank you!!arrow_forward18arrow_forward1. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .14 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forward
- 16arrow_forward11. A small charged plastic ball is vertically above another charged small ball in a frictionless test tube as shown in the figure. The balls are in equilibrium at a distance d= 2.0 cm apart. If the charge on one ball is tripled, find the new equilibrium distance between the balls in cm and report it to the proper number of significant figures.arrow_forward12. The electric field at a point 1.3 cm from a small object points toward the object with a strength of 180,000 N/C. Find the object's charge q, in nC to the proper number of significant figures. k = 1/4πε0 = 8.99 × 10^9 N ∙ m^2/C^2arrow_forward
- 14. When the potential difference between the plates of an ideal air-filled parallel plate capacitor is 35 V, the electric field between the plates has a strength of 670 V/m. If the plate area is 4.0 × 10^-2 m^2, what is the capacitance of this capacitor in pF? (ε0 = 8.85 × 10^-12 C^2/N ∙ m^2)arrow_forward10. A small styrofoam ball of mass 0.500 g is placed in an electric field of 1140 N/C pointing downward. What excess charge must be placed on the ball for it to remain suspended in the field? Report your answer in micro-Coulombs to three significant figures.arrow_forward2arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)