Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 34P

(a)

To determine

The initial system of the unstable particle.

(a)

Expert Solution
Check Mark

Answer to Problem 34P

The initial system of the unstable particle is isolated.

Explanation of Solution

Isolated system is system which does not allow the flow of mass energy in our out.

Here, the unstable particle system does not allow any disturbance form the interference of mass-energy from outside the system or didn’t allowed any mass–energy to flow out of the system initially. The fragments of smaller mass of the unstable nuclei are also a part of initial system which further carries out the mass and energy with themselves after the decay but there is no involvement of the mass and energy from outside the system.

Thus the initial system is isolated.

Conclusion:

Therefore, the initial system before the decay is isolated.

(b)

To determine

The analysis model appropriate for analysis of the given isolated system in part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 34P

The two appropriate analysis models are the conservation of momentum in an isolated system and conservation of energy is an isolated system.

Explanation of Solution

In an isolated system both the total momentum as well as total energy is conserved.

Determine the mass of the fragmented particles using the concept of conservation of total momentum and conservation of total energy.

The single unstable nuclei decayed into two fragments and there is no interference of any type of energy from outside and neither there is any flow of energy from outside the system. Therefore the momentum and the energy will be conserved during and after the fragmentation.

Thus the analysis which can be used to determine the mass of the two fragmented particles conservation of momentum in an isolated system and conservation of energy in an isolated system.

Conclusion:

Therefore, the two appropriate analysis models are the conservation of momentum in an isolated system and conservation of energy is an isolated system.

(c)

To determine

The relativistic factor for the two particles after decay.

(c)

Expert Solution
Check Mark

Answer to Problem 34P

The values for γ for the two particles are 6.22 and 2.01 .

Explanation of Solution

Given info: The mass of the unstable particle is 3.34×1027kg . The mass of the fragmented particle one is m1 , the mass of fragmented particle m2 . the velocity of particle with mass m1 is 0.987c and the velocity of the particle with mass m2 is 0.868c .

The speed of light is 3×108ms-1 .

The formula to calculate the relativistic value is,

γ=11u2c2 (1)

Here,

γ is the relativistic factor.

u is the velocity for the fragment.

c is the speed of the light.

For first fragment,

Substitute 0.987c for u in equation (1).

γ1=11(0.987c)2c2=6.22

Thus the value of γ for fragmented particle on is 6.22 .

For second fragment

Substitute 0.868c for u in equation (1).

γ2=11(0.868c)2c2=2.01

Thus the value of γ for fragmented particle second is 2.01 .

Conclusion:

Therefore, value of relativistic factor for fragment one is 6.22 and for the fragment second is 2.01 .

(d)

To determine

The relation between the masses of two fragments using the conservation of energy analysis.

(d)

Expert Solution
Check Mark

Answer to Problem 34P

The relation between the mass of fragment one and fragment second is m2+3.09m1=1.66×1027kg .

Explanation of Solution

From the conservation of energy the sum of the energy of the fragments is equal to the sum of the energy of the unstable nuclei.

E1+E2=Etotal (2)

Here,

E1 is the energy of the m1 fragment.

E2 is the energy of the m2 fragment.

Etotal is the total energy.

The formula to calculate the total relativistic energy is,

Etotal=mtotalc2

Here,

mtotal is the total mass of the unstable particle.

The formula to calculate relativistic energy of a particle m1 is,

E1=γ1m1c2

The formula to calculate the energy for particle m2 is,

E2=γ2m2c2

Substitute γ1m1c2 for E1 , γmtotalc2 for Etotal and γ2m2c2 for E2 in equation (2).

γ1m1c2+γ2m2c2=mtotalc2

Substitute 6.22 for γ1 and 2.01 for γ2 and 3.34×1027kg for mtotal in the above equation.

(6.22)m1c2+(2.01)m2c2=(3.34×1027kg)c2m2+3.09m1=1.66×1027kg

Thus the relation between the mass of fragment one and fragment second is,

m2+3.09m1=1.66×1027kg

Conclusion:

Therefore, the relation between the mass of fragment one and fragment second is m2+3.09m1=1.66×1027kg .

(e)

To determine

The relation between the masses of two fragments.

(e)

Expert Solution
Check Mark

Answer to Problem 34P

The relation between the masses m1 and m2 using the conservation of momentum analysis is m2=3.52m1 .

Explanation of Solution

Given info: The mass of the unstable nuclei is 3.34×1027kg . The mass of the fragmented particles is m1 and m2 . the velocity of particle m1 is 0.987c and the velocity of the particle m2 is 0.868c .

From the conservation of momentum the final momentum is zero,

p1=p2 (3)

Here,

p1 is the momentum of first fragment.

p2 is the momentum of the second fragment.

The momentum of first fragment is,

p1=γ1m1u1

The momentum of the second fragment is,

p2=γ2m2u2

Substitute γ2m2u2 for p2 and γ1m1u1 for p1 in equation (1).

γ1m1u1=γ2m2u2

Substitute 6.22 for γ1 , 0.987c for u1 , 2.01 for γ2 and 0.868c for u2 in the above equation.

γ1m1u1=γ2m2u2(6.22)(0.987c)m1=(2.01)(0.868c)m2m2=3.52m1

The relation between the two fragment is m2=3.52m1 .

Conclusion:

Therefore, from the analysis model of conservation of momentum the relation between the two masses is m2=3.52m1 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
No chatgpt pls will upvote
No chatgpt pls will upvote

Chapter 9 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 9 - Which of the following statements are fundamental...Ch. 9 - Prob. 6OQCh. 9 - Prob. 7OQCh. 9 - Prob. 8OQCh. 9 - Two identical clocks are set side by side and...Ch. 9 - You measure the volume of a cube at rest to be V0....Ch. 9 - A train is approaching you at very high speed as...Ch. 9 - Explain why, when defining the length of a rod, it...Ch. 9 - A particle is moving at a speed less than c/2. If...Ch. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - (a) “Newtonian mechanics correctly describes...Ch. 9 - Prob. 9CQCh. 9 - (i) An object is placed at a position p > f from a...Ch. 9 - With regard to reference frames, how does general...Ch. 9 - In a laboratory frame of reference, an observer...Ch. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - An astronaut is traveling in a space vehicle...Ch. 9 - At what speed does a clock move if it is measured...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - A friend passes by you in a spacecraft traveling...Ch. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - An enemy spacecraft moves away from the Earth at a...Ch. 9 - Prob. 20PCh. 9 - Figure P9.21 shows a jet of material (at the upper...Ch. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - An alien spaceship traveling at 0.600c toward the...Ch. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Spacecraft I, containing students taking a physics...Ch. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Owen and Dina are at rest in frame S, which is...Ch. 9 - A rod of length L0 moving with a speed v along the...Ch. 9 - Prob. 65P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY