Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 41P
To determine
The decrease in the mass of Sun in each second.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The sun generates energy through nuclear fusion, which converts mass intoenergy. If the sun radiates 3.8 × 1026 W of power, calculate the rate at which the sun loses mass (i.e., kg/s).
_________×109kg/s ?
Compare the energy produced per kg of fuel for the combustion of coal, d-d fusion and d-t fusion.d-d: __________ ×107 MJ/kg?d-t: ___________×108 MJ/kg ?
The age of the sun has been estimated at 4.6 billion years. If it has radiatedenergy at the same rate throughout its lifetime, 3.8×1026 W and if its current mass is1.989×1030 kg, what fraction of its original mass has been lost _____________% ?
Solar energy reached the earth at the rate of about 14000 W/m^2 of surface perpendicular to the direction of the sun. By how much does the mass of the sun decreases in each second? The mean radian of the earth's orbit is 1.5 x10^11m. The surface area of a sphere= 4πr²
The Sun emits energy in the form of light at a rate of approximately 1026 w. This light originates from fusion reactions, which occur primarily in the core
of the Sun, where the pressure and temperature are highest. Products from these fusion reactions differ in mass from the reactants by approximately
1%. Astronomers estimate that the Sun will run out of fuel in the core after approximately 1010 years. The mass of the Sun is approximately 1030 kg,
but only the portion of the mass that is in its core can undergo fusion. Which of the following represents the approximate fraction of the Sun's mass in its
core? Assume that there are 10' seconds in a year.
(A)
0.1%
1%
(C
10%
100%
Chapter 9 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 9.4 - Suppose the observer O on the train in Active...Ch. 9.4 - Prob. 9.2QQCh. 9.4 - Prob. 9.3QQCh. 9.4 - Prob. 9.4QQCh. 9.5 - You are driving on a freeway at a relativistic...Ch. 9.7 - The following pairs of energiesparticle 1: E, 2E;...Ch. 9 - An astronaut is traveling in a spacecraft in outer...Ch. 9 - A distant astronomical object (a quasar) is moving...Ch. 9 - Prob. 3OQCh. 9 - A spacecraft zooms past the Earth with a constant...
Ch. 9 - Which of the following statements are fundamental...Ch. 9 - Prob. 6OQCh. 9 - Prob. 7OQCh. 9 - Prob. 8OQCh. 9 - Two identical clocks are set side by side and...Ch. 9 - You measure the volume of a cube at rest to be V0....Ch. 9 - A train is approaching you at very high speed as...Ch. 9 - Explain why, when defining the length of a rod, it...Ch. 9 - A particle is moving at a speed less than c/2. If...Ch. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - (a) “Newtonian mechanics correctly describes...Ch. 9 - Prob. 9CQCh. 9 - (i) An object is placed at a position p > f from a...Ch. 9 - With regard to reference frames, how does general...Ch. 9 - In a laboratory frame of reference, an observer...Ch. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - An astronaut is traveling in a space vehicle...Ch. 9 - At what speed does a clock move if it is measured...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - A friend passes by you in a spacecraft traveling...Ch. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - An enemy spacecraft moves away from the Earth at a...Ch. 9 - Prob. 20PCh. 9 - Figure P9.21 shows a jet of material (at the upper...Ch. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - An alien spaceship traveling at 0.600c toward the...Ch. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Spacecraft I, containing students taking a physics...Ch. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Owen and Dina are at rest in frame S, which is...Ch. 9 - A rod of length L0 moving with a speed v along the...Ch. 9 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Rank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardAn observer in a rocket moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P1.30. The mirror is stationary with respect to S. A light pulse emitted by the rocket travels toward the mirror and is reflected back to the rocket. The front of the rocket is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the rocket. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the front of the rocket? Figure P1.30arrow_forward(a) Calculate for a proton that has a momentum of 1.00 kgm/s. (b) What is its speed? Such protons form a rare component of cosmic radiation with uncertain origins.arrow_forward
- An object having mass 900 kg and traveling at speed 0.850c collides with a stationary object having mass 1 400 kg. The two objects stick together. Find (a) the speed and (b) the mass of the composite object.arrow_forward(a) Using data from Table 7.1, find the mass destroyed when the energy in a barrel of crude oil is released. (b) Given these barrels contain 200 liters and assuming the density of crude oil is 750 kg/m3, what is the ratio of mass destroyed to original mass, m/m ?arrow_forwardA single-stage rocket of mass 308 metric tons (not including fuel) carries a payload of 3150 kg to low-Earth orbit. The exhaust speed of the rockets cryogenic propellant is 3.20 103 m/s. a. If the speed of the rocket as it enters orbit is 8.00 km/s, what is the mass of propellant used during the rockets burn? b. The rocket is redesigned to boost its exhaust speed by a factor of two. What is the mass of propellant used in the redesigned rocket to carry the same payload to low-Earth orbit? c. Because the exhaust speed of the redesigned rocket is increased by a factor of two, why is the fuel consumption of the redesigned rocket not exactly half that of the original rocket?arrow_forward
- What happens to the density of an object as its speed increases, as measured by an Earth observer?arrow_forwardWhich of the following statements are fundamental postulates of the special theory of relativity? More than one statement may be correct. (a) Light moves through a substance called the ether. (b) The speed of light depends on the inertial reference frame in which it is measured. (c) The laws of physics depend on the inertial reference frame in which they are used. (d) The laws of physics are the same in all inertial reference frames. (e) The speed of light is independent of the inertial reference frame in which it is measured.arrow_forwardAn unstable particle with mass m = 3.34 1027 kg is initially at rest. The particle decays into two fragments that fly off along the x axis with velocity components u1 = 0.987c and u2 = 0.868c. From this information, we wish to determine the masses of fragments 1 and 2. (a) Is the initial system of the unstable particle, which becomes the system of the two fragments, isolated or nonisolated? (b) Based on your answer to part (a), what two analysis models are appropriate for this situation? (c) Find the values of for the two fragments after the decay. (d) Using one of the analysis models in part (b), find a relationship between the masses m1 and m2 of the fragments. (e) Using the second analysis model in part (b). find a second relationship between the masses m1 and m2. (f) Solve the relationships in parts (d) and (c) simultaneously for the masses m1 and m2.arrow_forward
- A muon has a rest mass energy of 105.7 MeV, and it decays into an electron and a massless particle. (a) If all the lost mass is converted into the electron's kinetic energy, find for the electron. (b) What is the electron's velocity?arrow_forwardAn astronaut, of total mass 85.0 kg including her suit, stands on a spherical satellite of mass 375 kg, both at rest relative a nearby space station. She jumps at a speed of 2.56 m/s directly away from the satellite, as measured by an observer in the station. At what speed does that observer measure the satellite traveling in the opposite direction? (See Section 6.2.)arrow_forwardThere is approximately 1034 J of energy available from fusion of hydrogen in the world's oceans. (a) If 1033 J of this energy were utilized, what would be the decrease in mass of the oceans? (b) How great a volume of water does this correspond to? (c) Comment on whether this is a significant fraction of the total mass of the oceans.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY