* Flywheel energy Engineers at the University of Texas at Austin are developing an Advanced Locomotive Propulsion System that uses a gas turbine and perhaps the largest high-speed flywheel in the world in terms of the energy it can store. The flywheel can store 4.8 × 10 8 J of energy when operating at its maximum rotational speed of 15,000 rpm. At that rate, the perimeter of the rotor moves at approximately 1,000 m/s. Determine the radius of the flywheel and its rotational inertia.
* Flywheel energy Engineers at the University of Texas at Austin are developing an Advanced Locomotive Propulsion System that uses a gas turbine and perhaps the largest high-speed flywheel in the world in terms of the energy it can store. The flywheel can store 4.8 × 10 8 J of energy when operating at its maximum rotational speed of 15,000 rpm. At that rate, the perimeter of the rotor moves at approximately 1,000 m/s. Determine the radius of the flywheel and its rotational inertia.
* Flywheel energy Engineers at the University of Texas at Austin are developing an Advanced Locomotive Propulsion System that uses a gas turbine and perhaps the largest high-speed flywheel in the world in terms of the energy it can store. The flywheel can store
4.8
×
10
8
J
of energy when operating at its maximum rotational speed of 15,000 rpm. At that rate, the perimeter of the rotor moves at approximately 1,000 m/s. Determine the radius of the flywheel and its rotational inertia.
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.