College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 50P
To determine
The surface tension of blood plasma.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.)
(a) Where can a third charge be placed so that the net force on it is zero?
0.49
m to the right of the -2.50 μC charge
(b) What if both charges are positive?
0.49
xm to the right of the 2.50 μC charge
Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.)
magnitude
direction
2500
x
What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C
226
×
How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis
9a
9b
%
9
9d
would 0.215 be the answer for part b?
Chapter 9 Solutions
College Physics
Ch. 9.2 - Suppose you have one cubic meter of gold, two...Ch. 9.3 - The pressure at the bottom of a glass filled with...Ch. 9.4 - Several common barometers are built using a...Ch. 9.4 - Blood pressure is normally measured with the cuff...Ch. 9.5 - Atmospheric pressure varies from day to day. The...Ch. 9.5 - The density of lead is greater than iron, and both...Ch. 9.6 - You observe two helium balloons floating next to...Ch. 9 - The three containers in Figure CQ9.1 are filled...Ch. 9 - The density of air is 1.3 kg/m3 at sea level. From...Ch. 9 - Four solid, uniform objects are placed in a...
Ch. 9 - Figure CQ9.4 shows aerial views from directly...Ch. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Water flows along a streamline down a river of...Ch. 9 - During inhalation, the pressure in the lungs is...Ch. 9 - The water supply for a city is often provided from...Ch. 9 - An ice cube is placed in a glass of water. What...Ch. 9 - Prob. 11CQCh. 9 - Will an ice cube float higher in water or in an...Ch. 9 - Prob. 13CQCh. 9 - Prob. 14CQCh. 9 - A person in a boat floating in a small pond throws...Ch. 9 - One of the predicted problems due to global...Ch. 9 - An 81.5kg man stands on a horizontal surface. (a)...Ch. 9 - The weight of Earths atmosphere exerts an average...Ch. 9 - Calculate the mass of a solid gold rectangular bar...Ch. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Suppose a distant world with surface gravity of...Ch. 9 - Prob. 8PCh. 9 - (a) Calculate the absolute pressure at the bottom...Ch. 9 - Mercury is poured into a U-tube as shown in Figure...Ch. 9 - A collapsible plastic bag (Fig. F9.11) contains a...Ch. 9 - A hydraulic jack has an input piston of area 0.050...Ch. 9 - A container is filled to a depth of 20.0 cm with...Ch. 9 - Blaise Pascal duplicated Torricellis barometer...Ch. 9 - A sphygmomanometer is a device used to measure...Ch. 9 - Piston in Figure P9.16 has a diameter of 0.25...Ch. 9 - Buoyant Forces and Archimedes Principle A...Ch. 9 - Prob. 18PCh. 9 - A small ferryboat is 4.00 m wide and 6.00 m long....Ch. 9 - A 62.0-kg survivor of a cruise line disaster rests...Ch. 9 - A hot-air balloon consists of a basket banging...Ch. 9 - A large balloon of mass 226 kg is filled with...Ch. 9 - A spherical weather balloon is filled with...Ch. 9 - The average human has a density of 945 kg/m3 after...Ch. 9 - On October 21, 2001, Ian Ashpole of the United...Ch. 9 - The gravitational force exerted on a solid object...Ch. 9 - A cube of wood having an edge dimension of 20.0 cm...Ch. 9 - A light spring of force constant k = 160 N/m rests...Ch. 9 - A sample of an unknown material appears to weigh...Ch. 9 - An object weighing 300 N in air is immersed in...Ch. 9 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 9 - A horizontal pipe narrows from a radius of 0.250 m...Ch. 9 - A large water tank is 3.00 m high and filled lo...Ch. 9 - Wafer flowing through a garden hose of diameter...Ch. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - A hypodermic syringe contain a medicine with the...Ch. 9 - When a person inhales, air moves down the bronchus...Ch. 9 - A jet airplane in level flight has a mass of 8.66 ...Ch. 9 - A man attaches a divider to an outdoor faucet so...Ch. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - A jet of water squirts out horizontally from a...Ch. 9 - A large storage tank, open to the atmosphere at...Ch. 9 - The inside diameters of the larger portions of the...Ch. 9 - Water is pumped through a pipe of diameter 15.0 cm...Ch. 9 - Old Faithful geyser in Yellowstone Park erupts at...Ch. 9 - The Venturi tube shown in Figure P9.48 may be used...Ch. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - A certain fluid has a density of 1.080 kg/m3 and...Ch. 9 - Whole blood has a surface tension of 0.058 N/m and...Ch. 9 - Prob. 53PCh. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Spherical panicles of a protein of density 1.8...Ch. 9 - A hypodermic needle is 3.0 era in length and 0.30...Ch. 9 - Prob. 59PCh. 9 - The aorta in humans has a diameter of about 2.0...Ch. 9 - Prob. 61PCh. 9 - Glycerin in water diffuses along a horizontal...Ch. 9 - Prob. 63PCh. 9 - Small spheres of diameter 1.00 mm fall through 20C...Ch. 9 - The Deformation of Solids 65. A 200.-kg load is...Ch. 9 - A 25.0-m long steel cable with a cross-sectional...Ch. 9 - A plank 2.00 cm thick and 15.0 cm wide is firmly...Ch. 9 - Artificial diamonds can be made using...Ch. 9 - For safety in climbing, a mountaineer uses a nylon...Ch. 9 - Assume that if the shear stress in steel exceeds...Ch. 9 - Bone has a Youngs modulus of 18 109 Pa. Under...Ch. 9 - A stainless-steel orthodontic: wire is applied to...Ch. 9 - A high-speed lifting mechanism supports an 800.-kg...Ch. 9 - The deepest point in the ocean is in the Mariana...Ch. 9 - Prob. 75PCh. 9 - The total cross-sectional area of the load-bearing...Ch. 9 - An iron block of volume 0.20 m5 is suspended from...Ch. 9 - Prob. 78APCh. 9 - In most species of clingfish (family...Ch. 9 - Prob. 80APCh. 9 - Prob. 81APCh. 9 - Superman attempts to drink water through a very...Ch. 9 - The human brain and spinal cord are immersed in...Ch. 9 - A Hydrometer is an instrument used to determine...Ch. 9 - Prob. 85APCh. 9 - A helium-filled balloon, whose envelope has a mass...Ch. 9 - A light spring of constant A = 90.0 N/m is...Ch. 9 - A U-tube open at both ends is partially filled...Ch. 9 - In about 1657. Otto von Guericke, inventor of the...Ch. 9 - Oil having a density of 930 kg/m3 floats on water....Ch. 9 - Prob. 91AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forwardWhat functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forward
- What does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forwardWhat is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forward
- Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forwardc = ad Find the electric field at the location of q, in the figure below, given that q₁ = 9₁ = 9₁ = +4.60 nC, q=-1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction N/C ° counterclockwise from the +x-axis 9a % 9 9barrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forward
- A spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.275 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between 91 system of all three beads is zero. E field lines 91 92 93 X What charge does each bead carry? 91 = 92 = ?2.9 0 μC × What is the net charge of the system? What charges have to be equal? μC 93 2.9 με and 93. The sum of the charge on 91 and 92 is 91 +92 = -2.9 μC, and the net charge of thearrow_forwardAn electron has an initial speed of 5.26 x 100 m/s in a uniform 5.73 x 105 N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? opposite direction to the electron's initial velocity same direction as the electron's initial velocity not enough information to decide × What is the direction of the force on the electron? How does it compare to the direction of the electric field, considering the sign of the electron's charge? (b) How far does the electron travel before coming to rest? 0.0781 × What kinematic equation is relevant here? How do you calculate the force due to the electric field? m (c) How long does it take the electron to come to rest? 5.27e8 What is the final velocity of the electron? s (d) What is the electron's speed when it returns to its starting point? 5.26e6 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How to Calculate Density of Liquids - With Examples; Author: cleanairfilms;https://www.youtube.com/watch?v=DVQMWihs3wQ;License: Standard YouTube License, CC-BY