Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137443000
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 4MCQ
Suppose that two bicycles have equal overall mass, but one has thin lightweight tires while the other has heavier tires made of the same material. Why is the bicycle with thin tires easier to accelerate?
a. Thin tires have less area of contact with the road.
b. With thin tires, less mass is distributed at the rims.
c. With thin tires, you don’t have to raise the large mass of the tire at the bottom to the top.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls
Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby.
A. First, if the rod was not there, what statement best describes the charge distribution of the ball?
1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball.
B. Now, when the rod is moved close to the ball, what happens to the charges on the ball?
1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…
answer question 5-9
Chapter 9 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Ch. 9 - Review Question 9.1 Visualize an ice skater...Ch. 9 - Review Question 9.2 A solid wooden ball and a...Ch. 9 - Review Question 9.3 How is Newton’s second law for...Ch. 9 - Review Question 9.4 After a playground...Ch. 9 - Review Question 9.5 Will a can of watery chicken...Ch. 9 - Review Question 9.6 How can you explain the...Ch. 9 - Is it easier to open a door that is made of a...Ch. 9 - 2. You push a child on a swing. Why doesn’t the...Ch. 9 - In terms of the torque needed to rotate your leg...Ch. 9 - Suppose that two bicycles have equal overall mass,...
Ch. 9 - When riding a 10-speed bicycle up a hill, a...Ch. 9 - 6 The objects in Figure Q9.6 are made or two...Ch. 9 - 7. Select all the pairs below in which the two...Ch. 9 - If you turn on a coffee grinding machine sitting...Ch. 9 - A bowling ball is rolling without skidding down an...Ch. 9 - 10. The Mississippi River carries sediment from...Ch. 9 - Two disks are cut from the same uniform board. The...Ch. 9 - A spinning raw egg, if stopped momentarily and men...Ch. 9 - Compare the magnitude of Earth's rotational...Ch. 9 - You lay a pencil on a smooth desk (ignore sliding...Ch. 9 - If you watch the dive of an Olympic diver, you...Ch. 9 - 17. Explain why you do not tip over when riding a...Ch. 9 - Prob. 18CQCh. 9 - 19. Why do tightrope walkers carry long, heavy...Ch. 9 - The sweeping second hand on your wall clock is 20...Ch. 9 - 2. You find an old record player in your attic....Ch. 9 - 3. * Consider again the turntable described in the...Ch. 9 - 4. You step on the gas pedal in your car, and the...Ch. 9 - You pull your car into your driveway and stop. The...Ch. 9 - 6. An old wheat-grinding wheel in a museum...Ch. 9 - Centrifuge A centrifuge at the same museum is used...Ch. 9 - Potters wheel A fly sits on a potters wheel 0.30 m...Ch. 9 - 9. * During your tennis serve, your racket and arm...Ch. 9 - 10. * An ant clings to the outside edge of the...Ch. 9 - 11. * The speedometer on a bicycle indicates that...Ch. 9 - * You pedal your bicycle so that its wheel's...Ch. 9 - Mileage gauge The odometer on an automobile...Ch. 9 - *Speedomter The speedometer on an automobile...Ch. 9 - 15 * Ferns wheel A Ferris wheel starts at rest,...Ch. 9 - 16. * You push a disk-shaped platform tangentially...Ch. 9 - s rotational acceleration would be in ran/s2 if...Ch. 9 - 18. A 0.30-kg ball is attached at the end or a...Ch. 9 - 19. Centrifuge A centrifuge with a rotational...Ch. 9 - Airplane turbine what is the average torque needed...Ch. 9 - * A turntable turn ng at rotational speed 33 rpm...Ch. 9 - 22. * The solid pulley in Figure P9.22 consists...Ch. 9 - * The pulley shown in Figure P9.22 is initially...Ch. 9 - The pulley shown in Figure P9.22 is initially...Ch. 9 - 28. Derive an expression Tor the rotational...Ch. 9 - * Repeat the previous problem for an axis...Ch. 9 - Repeat the previous problem for axis BC, which...Ch. 9 - 31. * Merry-go-round A mechanic needs to replace...Ch. 9 - 32. * A small 0.80-kg train propelled by a fan...Ch. 9 - * Motor You wish to buy a motor that will be used...Ch. 9 - 34. ** A string wraps around a 6.0-kg wheel of...Ch. 9 - * Elena, a black belt in tae kwon do, is...Ch. 9 - Prob. 36PCh. 9 - 37. * Fire escape A unique fire escape for a...Ch. 9 - 38. ** An Atwood machine is shown in Example 9.4 ....Ch. 9 - onTruckandF2onbucket that the rope exerts on the...Ch. 9 - * A thin rod of length L and mass m rotates around...Ch. 9 - 41. * (a) Determine the rotaticnal momentum o’ a...Ch. 9 - Ballet A ballet student with her arms and a leg...Ch. 9 - * A 0.20-kg block moves at the end of a 0.50-m...Ch. 9 - * Puck on a string You attach a 100-g puck to a...Ch. 9 - 0. The student then turns the bicycle wheel over...Ch. 9 - 47. Neutron star An extremely dense neutron star...Ch. 9 - 48. * A boy of mass m is standing on the edge of a...Ch. 9 - 50. A grinding wheel with rotational inertia I...Ch. 9 - * The rotational speed of a flywheel increases by...Ch. 9 - B,/KrotA.Ch. 9 - * Flywheel energy for car The U.S. Department of...Ch. 9 - * Flywheel energy Engineers at the University of...Ch. 9 - 56. ** Rotating student A student sitting on a...Ch. 9 - * A turntable whose rotational inertia is...Ch. 9 - 58. **Repeat the previous problem, only assume...Ch. 9 - * Merry-go-round A carnival merry-go-round has a...Ch. 9 - *Est You hold an apple by its stem between your...Ch. 9 - * Stopping Earths rotation Suppose that Superman...Ch. 9 - BIO EST Punting a football Estimate the tangential...Ch. 9 - * BIO Triceps and darts Your upper arm is...Ch. 9 - 66. * BIO Bowling At the start of your throw of a...Ch. 9 - 67. ** Bio Leg lift You are doing one-leg leg...Ch. 9 - * A horizontal, circular platform can rotate...Ch. 9 - 69. * You have an empty cylindrical metal can and...Ch. 9 - ** in the previous problem, each nut has a mass of...Ch. 9 - 71. * Superball If you give a superball backspin...Ch. 9 - Prob. 72GPCh. 9 - 73. * EST White dwarf A star the size of our Sun...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...Ch. 9 - Tidal energy Tides are now used so gene-ate...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
20. For each pedigree shown,
a. Identify which simple pattern of hereditary trans-mission (autosomal dominant,...
Genetic Analysis: An Integrated Approach (3rd Edition)
The genotype of F1, individuals in a tetrahybrid cross is AaBbCcDd. Assuming lndependent assortment of these fo...
Campbell Biology (11th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- AMPS VOLTS OHMS 5) 50 A 110 V 6) .08 A 39 V 7) 0.5 A 60 8) 2.5 A 110 Varrow_forwardThe drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forward
- PROBLEM 3 Cables A and B are Supporting a 185-lb wooden crate. What is the magnitude of the tension force in each cable? A 20° 35° 185 lbsarrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)arrow_forwardPROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbsarrow_forward
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardSTRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forward
- Hello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY