
Review Question 9.1 Visualize an ice skater rotating faster and faster in a clockwise direction What are the signs of rotational velocity and rotational acceleration? As the skater starts slowing down, what are the signs of rotational velocity and acceleration?

To explain: The signs of rotational velocity and rotational acceleration when an ice skater starts rotating faster and faster in the clockwise direction. Also, explain the signs of rotational velocity and rotational acceleration when the skater starts slowing down.
Answer to Problem 1RQ
Solution:
When the ice skater is rotating faster and faster, the signs of rotational velocity and rotational acceleration are negative. However, when the ice skater is slowing down, the sign of rotational velocity remains negative whereas that of rotational acceleration becomes positive.
Explanation of Solution
Introduction:
Rotational velocity is the rate of change of the angular position of a body rotating about a center or any point within a given period of time. It is written as:
Here,
The rate of change of angular velocity is called rotational acceleration. It is written as:
Here,
When an object is rotating in the clockwise direction, the sign of rotational velocity is taken as negative, and vice versa. The sign of rotational acceleration is the same as that of rotational velocity when rotational velocity is increased, but opposite when rotational velocity is decreased.
Explanation:
When an ice skater is rotating faster and faster in the clockwise direction, it is clear that the rotational velocity is increasing with respect to time. The sign of rotational velocity depends on the direction of rotation of the object. If the object is rotating in a clockwise direction, the sign will be negative, and vice versa.
In the given problem, the ice skater is rotating in the clockwise direction; so, rotational velocity is negative. The sign of rotational acceleration is also negative because rotational velocity is increasing with respect to time and thus rotational acceleration will have same sign as that of rotational velocity.
The second case, when the ice skater is slowing down, but rotating in a clockwise direction, signifies that the sign of rotational velocity is negative but that of rotational acceleration is opposite to the sign of rotational velocity as velocity is decreasing with respect to time. So, the sign of angular acceleration, in this case, will be positive.
Conclusion:
Hence, it is clear that when the ice skater is rotating faster and faster, rotational velocity and rotational acceleration are negative as per the sign convention. On the other hand, when the ice skater is slowing down, the rotational velocity has a negative sign while rotational acceleration has a positive sign.
Want to see more full solutions like this?
Chapter 9 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Chemistry & Chemical Reactivity
Human Anatomy & Physiology (2nd Edition)
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Human Physiology: An Integrated Approach (8th Edition)
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardA 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?arrow_forwardPROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forward
- Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardSlinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forward
- No chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forwardA charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





