OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 37QRT
Interpretation Introduction

Interpretation:

The amount of mass of CCl2F2 must evaporate to freeze 2 mole of water initially at 20C has to be calculated.

Concept Introduction:

Calculation of heat energy:

When both the phases are same means a transition is taking place within the same phase like between liquid to liquid.  Then, ΔH0=m×s×Δθ.

Where, m= mass of substance, s= Specific heat of substance in a particular phase and Δθ= Temperature difference.

When two phases are different means a transition is taking place between two different phases like between solid to liquid.  Then, ΔH0=n×ΔfusorvapH0.

Where, n= No. of moles of substance , ΔfusH0= Fusion enthalpy of a substance in its solid phase and ΔvapH0= enthalpy of vaporization of a substance in its liquid phase.

Expert Solution & Answer
Check Mark

Answer to Problem 37QRT

The amount of mass of CCl2F2 must evaporate to freeze 2 mole of water initially at 20C is 51.9g.

Explanation of Solution

Given data:

The specific heat capacity of liquid water is 4.184Jg1C1.  The fusion of enthalpy for solid ice is 6.02kJ/mol. The vaporization enthalpy of CCl2F2 is 289J/g.

Calculation of mass of water:

  No. of moles (n)=mMm=n×M=2mol×18.0152g/mol=36.0304g36g.

  1. 1. Cool the water from 20oC to 0oC

The heat energy evolved during this process can be calculated as given below.

  ΔH0=m×s×Δθ=(36g)(4.184Jg1C1)[(0C)(20C)]=3012.48J=3012.48J×1kJ1000J=3.01248kJ3.0kJ.

Where, m= mass of water, s= Specific heat of liquid water and Δθ= Temperature difference.

  1. 2. Freeze the ice at 0oC

The heat energy evolved during this process can be calculated as given below.

  ΔcrystH=ΔfreezeH=ΔfusH=6.02kJ/mol

  ΔH0=(n)×(ΔfusH0)=(2mol)×(6.020kJmol)=12.040kJ12.0kJ.

Where, n= No. of moles of water and ΔfusH0= Fusion enthalpy of solid ice.

Now, the total heat energy evolved during freezing of 2 mole of water from 20C is the sum total of all the heat energies required for each transition:

  ΔH=3.0kJ12kJ=-15kJ.

The heat energy required to evaporate one gram of CCl2F2 is 289J.  So the amount of CCl2F2 will be evaporated by 15kJ energy can be calculated as given below.

  15kJ×1000J1kJ×1g289J=51.9g.

Therefore, the amount of mass of CCl2F2 must evaporate to freeze 2 mole of water initially at 20C is 51.9g.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Google
Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfox
10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①

Chapter 9 Solutions

OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:

Ch. 9.4 - Prob. 9.6CECh. 9.4 - Sublimation is an excellent means of purification...Ch. 9.4 - Prob. 9.6PSPCh. 9.4 - Prob. 9.8ECh. 9.4 - Prob. 9.9ECh. 9.5 - Predict which liquid—glycerol, HOCH2CH(OH)CH2OH,...Ch. 9.5 - Prob. 9.11CECh. 9.6 - Crystalline polonium has a primitive cubic unit...Ch. 9.6 - Calculate the unit cell edge length of copper...Ch. 9.6 - Vanadium metal crystallizes in a body-centered...Ch. 9.6 - Prob. 9.13ECh. 9.6 - Prob. 9.14ECh. 9.6 - Prob. 9.9PSPCh. 9.9 - Prob. 9.10PSPCh. 9.9 - The graph below is obtained when a liquid metal is...Ch. 9.9 - Look in Appendix D and compare the electron...Ch. 9.11 - Prob. 9.11PSPCh. 9 - Prob. ISPCh. 9 - Prob. IISPCh. 9 - Prob. IIISPCh. 9 - Prob. 1QRTCh. 9 - Prob. 2QRTCh. 9 - Prob. 3QRTCh. 9 - Prob. 4QRTCh. 9 - Prob. 5QRTCh. 9 - Prob. 6QRTCh. 9 - Which processes are endothermic? (a) Condensation...Ch. 9 - Prob. 8QRTCh. 9 - Prob. 9QRTCh. 9 - Prob. 10QRTCh. 9 - Prob. 11QRTCh. 9 - Prob. 12QRTCh. 9 - Prob. 13QRTCh. 9 - After exercising on a hot summer day and working...Ch. 9 - Prob. 15QRTCh. 9 - The molar vaporization enthalpy of methanol is...Ch. 9 - Prob. 17QRTCh. 9 - Mercury is highly toxic. Although it is a liquid...Ch. 9 - Prob. 19QRTCh. 9 - Prob. 20QRTCh. 9 - Prob. 21QRTCh. 9 - Prob. 22QRTCh. 9 - Prob. 23QRTCh. 9 - Prob. 24QRTCh. 9 - Prob. 25QRTCh. 9 - Prob. 26QRTCh. 9 - A liquid has a vapH of 38.7 kJ/mol and a boiling...Ch. 9 - Prob. 28QRTCh. 9 - The vapor pressure of ethanol, C2H5OH, at 50.0 C...Ch. 9 - Prob. 30QRTCh. 9 - Prob. 31QRTCh. 9 - Prob. 32QRTCh. 9 - Which would you expect to have the higher fusion...Ch. 9 - Prob. 34QRTCh. 9 - Prob. 35QRTCh. 9 - Prob. 36QRTCh. 9 - Prob. 37QRTCh. 9 - Prob. 38QRTCh. 9 - Prob. 39QRTCh. 9 - Prob. 40QRTCh. 9 - Prob. 41QRTCh. 9 - Prob. 42QRTCh. 9 - Prob. 43QRTCh. 9 - Prob. 44QRTCh. 9 - At the critical point for carbon dioxide, the...Ch. 9 - Prob. 46QRTCh. 9 - Prob. 47QRTCh. 9 - On the basis of the description given, classify...Ch. 9 - On the basis of the description given, classify...Ch. 9 - Prob. 50QRTCh. 9 - Prob. 51QRTCh. 9 - Prob. 52QRTCh. 9 - Prob. 53QRTCh. 9 - Prob. 54QRTCh. 9 - Prob. 55QRTCh. 9 - Prob. 56QRTCh. 9 - Prob. 57QRTCh. 9 - Prob. 58QRTCh. 9 - Prob. 59QRTCh. 9 - Prob. 60QRTCh. 9 - Prob. 61QRTCh. 9 - The ionic radii of Cs+ and Cl are 181 and 167 pm,...Ch. 9 - Prob. 63QRTCh. 9 - Prob. 64QRTCh. 9 - Prob. 65QRTCh. 9 - Tungsten has a body-centered cubic unit cell and...Ch. 9 - Prob. 67QRTCh. 9 - Prob. 68QRTCh. 9 - Prob. 69QRTCh. 9 - Prob. 70QRTCh. 9 - Prob. 71QRTCh. 9 - Prob. 72QRTCh. 9 - Prob. 73QRTCh. 9 - Prob. 74QRTCh. 9 - Prob. 75QRTCh. 9 - Prob. 76QRTCh. 9 - Prob. 77QRTCh. 9 - Prob. 78QRTCh. 9 - Prob. 79QRTCh. 9 - Prob. 80QRTCh. 9 - Which substance has the greatest electrical...Ch. 9 - Prob. 82QRTCh. 9 - Prob. 83QRTCh. 9 - Prob. 84QRTCh. 9 - Prob. 85QRTCh. 9 - Prob. 86QRTCh. 9 - What makes a glass different from a crystalline...Ch. 9 - Prob. 88QRTCh. 9 - Prob. 89QRTCh. 9 - Prob. 90QRTCh. 9 - Will a closed container of water at 70 C or an...Ch. 9 - Prob. 92QRTCh. 9 - Prob. 95QRTCh. 9 - Prob. 96QRTCh. 9 - Prob. 97QRTCh. 9 - Prob. 98QRTCh. 9 - Prob. 99QRTCh. 9 - Prob. 100QRTCh. 9 - Prob. 101QRTCh. 9 - Prob. 102QRTCh. 9 - Prob. 103QRTCh. 9 - Consider this information regarding two compounds....Ch. 9 - Prob. 105QRTCh. 9 - Prob. 106QRTCh. 9 - If you get boiling water at 100 C on your skin, it...Ch. 9 - Prob. 108QRTCh. 9 - The normal boiling point of SO2 is 263.1 K and...Ch. 9 - Butane is a gas at room temperature; however, if...Ch. 9 - Prob. 111QRTCh. 9 - Examine the nanoscale diagrams and the phase...Ch. 9 - Consider the phase diagram and heating-curve...Ch. 9 - Prob. 115QRTCh. 9 - Prob. 116QRTCh. 9 - The phase diagram for water over a relative narrow...Ch. 9 - Prob. 118QRTCh. 9 - Prob. 119QRTCh. 9 - Prob. 120QRTCh. 9 - Prob. 121QRTCh. 9 - Prob. 122QRTCh. 9 - Titanium metal crystallizes in a body-centered...Ch. 9 - Prob. 9.ACPCh. 9 - Prob. 9.BCPCh. 9 - Prob. 9.CCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY