
Assume that electricity costs 15 cents per kilowatt- hour. Calculate the monthly cost of operating each of the following:
a 100 W light bulb, 5 h/day
a 600 W refrigerator, 24 h/day
a 12,000 W electric range, 1 h/day
a 1000 W toaster, 10 min/day

Interpretation:
The monthly cost of operating each of the given cases is to be determined.
Concept introduction:
Unit conversion is defined as the process in which multiple steps are used to convert the unit of measurement for the same given quantity. It is determined by multiplication with a conversion factor.
The fraction in which numerator and denominator are the same quantities but are determined in different units, is known as a conversion factor.
Since, 1 kW is equal to 1000 W, hence, conversion factor is as follows:
Answer to Problem 35E
Solution:
Explanation of Solution
a) A 100 W light bulb, 5 h/day
The electricity cost is
Conversion of watt into kilowatt is as follows:
In one month, there are
In one day, the consumption is
The cost of electricity for one kilowatt-hour is
Therefore, the monthly cost is
b)
The electricity cost is
Conversion of watt into kilowatt is as follows:
In one month, there are
In one day, the consumption is
The cost of electricity for one kilowatt-hour is
Therefore, the monthly cost is
c)
The electricity cost is
Conversion of watt into kilowatt is as follows:
In one month, there are
In one day, the consumption is
The cost of electricity for one kilowatt-hour is
Therefore, the monthly cost is
d)
The electricity cost is
Conversion of watt into kilowatt is as follows:
In one month, there are
In one day, the consumption is
The cost of electricity for one kilowatt-hour is
Therefore, the monthly cost is
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry In Focus
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





