(a)
Interpretation:
The electronic configuration in molecular orbital term should be written for the given molecule chlorine monoxide
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
(a)
Answer to Problem 27PS
The electronic configuration
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
(b)
Interpretation:
The Highest Occupied Molecular Orbital (HOMO) in the given molecule chlorine monoxide
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
HOMO and LUMO: This terms are stands for highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), respectively. So this energy difference between the HOMO and LUMO is termed the HOMO–LUMO gap.
(b)
Answer to Problem 27PS
The
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
The molecular Orbital diagram for the given molecule can be drawn as follows,
In the (
(c)
Interpretation:
It should be checked that whether the given molecule is diamagnetic or paramagnetic in nature.
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
Atoms with unpaired electrons are called Paramagnetic. Paramagnetic atoms are attracted to a magnet.
Atoms with paired electrons are called diamagnetic. Diamagnetic atoms are repelled by a magnet
(c)
Answer to Problem 27PS
The given molecule
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
The molecular Orbital diagram for the given molecule can be drawn as follows,
In the (
Presence of an unpaired electron induces paramagnetic character to the molecule.
Therefore, the given molecule is paramagnetic in nature.
(d)
Interpretation:
Bond order and net
Concept Introduction:
Molecular orbital (MO) theory: is a method for determining molecular structure in which electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule.
According to this theory there are two types of orbitals,
- (1) Bonding orbitals
- (2) Antibonding orbitals
Electrons in molecules are filled in accordance with the energy; the anti-bonding orbital has more energy than the bonding orbitals.
The electronic configuration of oxygen molecule
The * represent the antibonding orbital
Bond order: It is the measure of number of electron pairs shared between two atoms.
(d)
Explanation of Solution
There are
In accordance with the MO theory, the electron configuration of this molecule can be written as follows,
From the bond order value it is clear that, there are net
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry & Chemical Reactivity
- It is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwardCould the anion Li2 exist? What is the ions bond order?arrow_forwardThe cations O2+ and N2+ are formed when molecules of O2 and N2 are subjected to intense, high-energy solar radiation in Earths upper atmosphere. Write the electron configuration for O2+. Predict its bond order and magnetic behavior.arrow_forward
- The structure of caffeine is shown below. (a) Complete the Lewis structure. (b) How many pi bonds are present in caffeine? How many sigma bonds? (c) Identify the hybridization of the carbon atoms. (d) What is the value of the O-C-N angle?arrow_forwardNitrogen trifluoride (NF3) is used in the electronics industry to clean surfaces. NF3 is also a potent greenhouse gas. (A) Draw the Lewis structure of NF3 and determine its molecular geometry. (B) BF3 and NF3 both have three covalently bonded fluorine atoms around a central atom. Do they have the same dipole moment? (C) Could BF3 also behave as a greenhouse gas? Explain why or why not.arrow_forwardButadiene, C4H6, is a planar molecule that has the followingcarbon–carbon bond lengths: (a) Predict the bond angles around each of the carbon atoms and sketch the molecule. (b) From left to right, what is the hybridization of each carbon atom in butadiene? (c) The middle C—C bond length in butadiene (1.48 Å) is a little shorter than the average C—C single bond length (1.54 Å). Does this imply that the middle C—C bond in butadiene is weaker or stronger than the average C—C single bond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might support the shorter middle C—C bond.arrow_forward
- Use valence bond theory to explain the bonding in F2, HF, and ClBr. (a) F2 This molecule is symmetrical. The single bond present in this molecule is derived from the overlap of two (1s, 2s, 2p, 3s, 3d, 3p, 4s, 4d, 4p) orbitals contributed by each of the F atoms. (b) HF This molecule is asymmetrical. The single bond present in this molecule is derived from the overlap of one (1s, 2s, 2p, 3s, 3d, 3p, 4s, 4d, 4p) orbital contributed by the H atom and one (1s, 2s, 2p, 3s, 3d, 3p, 4s, 4d, 4p) orbital contributed by the F atom. (c) ClBr This molecule is also asymmetrical. The single bond present in this molecule is derived from the overlap of one (1s, 2s, 2p, 3s, 3d, 3p, 4s, 4d, 4p) orbital contributed by the Cl atom and one (1s, 2s, 2p, 3s, 3d, 3p, 4s, 4d, 4p) orbital contributed by the Br atom. Sketch the overlap of the atomic orbitals involved in the bonds.arrow_forwardA useful solvent that will dissolve salts as well as organic compounds is the compound acetonitrile, H3CCN. It is present in paint strippers.(a) Write the Lewis structure for acetonitrile, and indicate the direction of the dipole moment in the molecule.(b) Identify the hybrid orbitals used by the carbon atoms in the molecule to form σ bonds.(c) Describe the atomic orbitals that form the π bonds in the molecule. Note that it is not necessary to hybridize the nitrogen atom.arrow_forwardWhich of the following bonds are polar? (a) B¬F,(b) Cl¬Cl, (c) Se¬O, (d) H¬I. Which is the moreelectronegative atom in each polar bond?arrow_forward
- Which statement is always true according to VSEPR theory?(a) The shape of a molecule is determined only by repulsions among bonding electron groups.(b) The shape of a molecule is determined only by repulsions among nonbonding electron groups.(c) The shape of a molecule is determined by the polarity of its bonds.(d) The shape of a molecule is determined by repulsions among all electron groups on the central atom (or interior atoms, if there is more than one).arrow_forwardIf an electron is removed from a fluorine molecule, an F+2molecular ion forms.(a) Give the molecular electron configurations for F2 and F+2 (for the MOs constructed from valence AOs).(b) Give the bond order of each species.(c) Predict which species should be paramagnetic.(d) Predict which species has the greater bond dissociation energy.arrow_forwardConsider the molecules SCl₂, F₂, CS₂, CF₄, and BrCl.(a) Which has bonds that are the most polar?(b) Which have a molecular dipole moment?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning