Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 23E
A 150-g trick baseball is thrown at 60 km/h. It explodes in flight into two pieces, with a 38-g piece continuing straight ahead at 83 km/h. How much energy do the pieces gain in the explosion?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A firework accidently explodes while on the ground. The firework was initially at rest and breaks into 2 pieces in the explosion. Piece A has 2.60 times the mass of piece B.
If 7500 J is released in the explosion, and 90% of that energy goes into the kinetic energy of the 2 pieces, what is the final KE of piece A and piece B?
A truck (m=5000 kg) initially moving at 5 m/s slams into the back of a car
(m=1,000 kg) that is sitting at an intersection. The bumpers lock, and the two
vehicles move off together. In the instant right after the collision, what is the
speed of this wreckage? How much energy is dissipated?
v = 5 m/s
100-160
m=5,000 kg
m=1,000 kg
A 50-g ball is shot into a chamber attached to a 500-g cart. After the collision the ball/cart combination moves away with a speed of 3.0 m/s. Assuming that friction and air resistance are negligible, determine the amount of energy lost in the collision.
Chapter 9 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 9.1 - Prob. 9.1GICh. 9.2 - A 500-g fireworks rocket is moving with velocity...Ch. 9.2 - Two skaters toss a basketball back and forth on...Ch. 9.3 - Which of the following systems has (1) zero...Ch. 9.4 - Which of the following qualifies as a collision?...Ch. 9.5 - Which of the following collisions qualify as...Ch. 9.6 - One ball is at rest on a level floor. A second...Ch. 9 - Roughly where is your center of mass when youre...Ch. 9 - Prob. 2FTDCh. 9 - Prob. 3FTD
Ch. 9 - The momentum of a system of pool balls is the same...Ch. 9 - An hourglass is inverted and placed on a scale....Ch. 9 - Why are cars designed so that their front ends...Ch. 9 - Give three everyday examples of inelastic...Ch. 9 - Is it possible to have an inelastic collision in...Ch. 9 - Prob. 9FTDCh. 9 - Why dont we need to consider external forces...Ch. 9 - How is it possible to have a collision between...Ch. 9 - A pitched baseball moves no faster than the...Ch. 9 - Two identical satellites are going in opposite...Ch. 9 - Prob. 14ECh. 9 - Two particles of equal mass m are at the vertices...Ch. 9 - Rework Example 9.1 with the origin at the center...Ch. 9 - Three equal masses lie at the corners of an...Ch. 9 - Prob. 18ECh. 9 - A popcorn kernel at rest in a hot pan bursts into...Ch. 9 - A 60-kg skater, at rest on frictionless ice,...Ch. 9 - A plutonium-239 nucleus at rest decays into a...Ch. 9 - A toboggan of mass 8.6 kg is moving horizontally...Ch. 9 - A 150-g trick baseball is thrown at 60 km/h. It...Ch. 9 - An object with kinetic energy K explodes into two...Ch. 9 - Two 140-kg satellites collide at an altitude where...Ch. 9 - High-speed photos of a 220-g flea jumping...Ch. 9 - Youre working in mission control for an...Ch. 9 - In a railroad switchyard, a 56-ton freight car is...Ch. 9 - In a totally inelastic collision between two equal...Ch. 9 - Prob. 30ECh. 9 - Two identical trucks have mass 5500 kg when empty,...Ch. 9 - An alpha particle (4He) strikes a stationary gold...Ch. 9 - Playing in the street, a child accidentally tosses...Ch. 9 - A block of mass m undergoes a one-dimensional...Ch. 9 - A proton moving at 6.9 Mm/s collides elastically...Ch. 9 - A head-on, elastic collision between two particles...Ch. 9 - Find the center of mass of a pentagon with five...Ch. 9 - Wildlife biologists fire 20-g rubber bullets to...Ch. 9 - Consider a system of three equal-mass particles...Ch. 9 - Youre with 19 other people on a boat at rest in...Ch. 9 - A hemispherical bowl is at rest on a frictionless...Ch. 9 - Physicians perform needle biopsies to sample...Ch. 9 - Find the center of mass of the uniform, solid cone...Ch. 9 - A firecracker, initially at rest, explodes into...Ch. 9 - An 11,000-kg freight car rests against a spring...Ch. 9 - On an icy road, a 1200-kg car moving at 50 km/h...Ch. 9 - A 1250-kg car is moving with velocity...Ch. 9 - Masses m and 3m approach at the same speed v and...Ch. 9 - A 238U nucleus is moving in the x-direction at 5.0...Ch. 9 - A cylindrical concrete silo is 4.0 m in diameter...Ch. 9 - A 42-g firecracker is at rest at the origin when...Ch. 9 - A 60-kg astronaut floating in space simultaneously...Ch. 9 - Assuming equal-mass pieces in Exercise 24, find...Ch. 9 - A 62-kg sprinter stands on the left end of a...Ch. 9 - Youre a production engineer in a cookie factory,...Ch. 9 - Mass m, moving at speed 2v, approaches mass 4m,...Ch. 9 - Verify explicitly that kinetic energy is conserved...Ch. 9 - While standing on frictionless ice, you (mass 65.0...Ch. 9 - Youre an accident investigator at a scene where a...Ch. 9 - A fireworks rocket is launched vertically upward...Ch. 9 - Two objects moving in opposite directions with the...Ch. 9 - Explosive bolts separate a 950-kg communications...Ch. 9 - Youre working in quality control for a model...Ch. 9 - Youre investigating an accident in which a 1040-kg...Ch. 9 - A 400-mg popcorn kernel is skittering across a...Ch. 9 - Two identical objects with the same initial speed...Ch. 9 - A proton (mass 1 u) moving at 6.90 Mm/s collides...Ch. 9 - Two objects, one initially at rest, undergo a...Ch. 9 - Blocks B and C have masses 2m and m, respectively,...Ch. 9 - Derive Equation 9.15b.Ch. 9 - An object collides elastically with an equal-mass...Ch. 9 - A proton (mass 1 u) collides elastically with a...Ch. 9 - Two identical billiard balls are initially at rest...Ch. 9 - Find an expression for the impulse imparted by a...Ch. 9 - A 32-u oxygen molecule (O2) moving in the...Ch. 9 - A 114-g Frisbee is lodged on a tree branch 7.65 m...Ch. 9 - You set a small ball of mass m atop a large ball...Ch. 9 - A car moving at speed v undergoes a...Ch. 9 - A 200-g block is released from rest at a height of...Ch. 9 - A 14-kg projectile is launched at 380 m/s at a 55...Ch. 9 - During a crash test, a car moving at 50 km/h...Ch. 9 - Use numerical or graphical techniques to estimate...Ch. 9 - A block of mass m1 undergoes a one-dimensional...Ch. 9 - Two objects of unequal mass, one initially at...Ch. 9 - Prob. 86PCh. 9 - Find the center of mass of a uniform slice of...Ch. 9 - In a ballistic pendulum demonstration gone bad, a...Ch. 9 - An 80-kg astronaut has become detached from the...Ch. 9 - Prob. 90PCh. 9 - A thin rod extends from x = 0 to x = L. It carries...Ch. 9 - Model rocket motors are specified by giving the...Ch. 9 - A block of mass M is moving at speed r0 on a...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why does a one-step growth curve differ in shape from that of a bacterial growth curve?
Brock Biology of Microorganisms (15th Edition)
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them (Fig. P8.7). A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of 2.00 m/s. (a) What is the velocity of the block of mass m? (b) Find the systems original elastic potential energy, taking m = 0.350 kg. (c) Is the original energy in the spring or in the cord? (d) Explain your answer to part (c). (e) Is the momentum of the system conserved in the bursting-apart process? Explain how that is possible considering (f) there are large forces acting and (g) there is no motion beforehand and plenty of motion afterward? Figure P8.7arrow_forwardEzra (m = 25.0 kg) has a tire swing and wants to swing as high as possible. He thinks that his best option is to run as fast as he can and jump onto the tire at full speed. The tire has a mass of 10.0 kg and hangs 3.75 m straight down from a tree branch. Ezra stands back 10.0 m and accelerates to a speed of 3.50 m /s before jumping onto the tire swing. a. How fast are Ezra and the tire moving immediately after he jumps onto the swing? b. How high does the tire travel above its initial height?arrow_forwardHow much energy is lost to a dissipative drag force if a 60-kg person falls at a constant speed for 15 meters?arrow_forward
- Check Your Understanding There is a second solution to the system of equations solved in this example (because the energy equation is quadratic): v1.f=-2.5m/s , v2.f=0 . This solution is unacceptable on physical grounds; what’s with it?arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forwardYour physical education teacher throws a baseball to you at a certain speed and you catch it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass of the baseball. You are given the following choices: You can have the medicine ball thrown with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank these choices from easiest to hardest to catch.arrow_forward
- A 3.00-kg steel ball strikes a wall with a speed of 10.0 m/s at an angle of = 60.0 with the surface. It bounces off with the same speed and angle (Fig. P8.9). If the ball is in contact with the wall for 0.200 s, what is the average force exerted by the wall on the ball? Figure P8.9arrow_forwardA 2 kg falcon is diving at 28 m/s at a downward angle to intercept a 500 g dove flying horizontally. After the collision, to prevent them from hitting the ground below, the falcon immediately spreads its wings to begin slowing down. What energy (in J) must be dissipated by the falcon to slow them to a stop in 3 vertical meters?arrow_forwardOne end of a massless, 30-cm-long spring with spring constant 25 N/m is attached to a 250 g stationary air-track glider; the other end is attached to the track. A 500 g glider hits and sticks to the 250 g glider, compressing the spring to a minimum length of 22 cm. What was the speed of the 500 g glider just before impact?arrow_forward
- Before an elastic collision of two balls of 2.0 kg each, the kinetic energies of two balls are measured to be 14J and 28J. After the collision the first ball was moving at 2.5 m/s. What is the velocity of the second ball?arrow_forwardA 114 g frisbee is caught in a tree. To dislodge it You toss a 230 g lump of clay vertically upward.  Clay and frisbee stick together and rise to a maximum of 3.1 m above the frisbees initial position. What was the speed of the Clay as it hit the frisbee?arrow_forwardBlock A and block B collide and the impact is such that energy is conserved. Just before impact their velocities are vA = (5.1i) m/s and vB = (-2.1i) m/s respectively. If the masses of the blocks are the same, what is the speed of block A just after the collision?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY