Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 88P
In a ballistic pendulum demonstration gone bad, a 0.52-g pellet, fired horizontally with kinetic energy 3.25 J, passes straight through a 400-g Styrofoam pendulum block. If the pendulum rises a maximum height of 0.50 mm, how much kinetic energy did the pellet have after emerging from the Styrofoam?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a ballistic pendulum demonstration gone bad, a 0.54 gg pellet, fired horizontally with kinetic energy 3.30 JJ , passes straight through the 400 gg Styrofoam pendulum block. If the pendulum rises a maximum height of 0.52 m , how much kinetic energy did the pellet have after emerging from the Styrofoam?
In the figure, a ball of mass m = 56 g is shot with speed v₁ = 23 m/s (in the negative direction of an x axis) into the barrel of a spring gun
of mass M = 223 g initially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the
spring. Assume that the increase in thermal energy due to friction between the ball and the barrel is negligible. (a) What is the speed of
the spring gun after the ball stops in the barrel? (b) What fraction of the initial kinetic energy of the ball is stored in the spring?
(a) Number i
(b) Number
Units
Units
M
>
A Vulcan spaceship has a mass of 6.50 × 104 kg and a Romulan spaceship is twice as massive. Both have engines that generate the same total force of 9.50 × 106 N.
If each spaceship fires its engine for the same amount of time, starting from rest and ignoring any change in mass due to whatever is expelled by the engines, calculate the energy of the Vulcan spaceship if the engines are fired for 102 s.
Chapter 9 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 9.1 - Prob. 9.1GICh. 9.2 - A 500-g fireworks rocket is moving with velocity...Ch. 9.2 - Two skaters toss a basketball back and forth on...Ch. 9.3 - Which of the following systems has (1) zero...Ch. 9.4 - Which of the following qualifies as a collision?...Ch. 9.5 - Which of the following collisions qualify as...Ch. 9.6 - One ball is at rest on a level floor. A second...Ch. 9 - Roughly where is your center of mass when youre...Ch. 9 - Prob. 2FTDCh. 9 - Prob. 3FTD
Ch. 9 - The momentum of a system of pool balls is the same...Ch. 9 - An hourglass is inverted and placed on a scale....Ch. 9 - Why are cars designed so that their front ends...Ch. 9 - Give three everyday examples of inelastic...Ch. 9 - Is it possible to have an inelastic collision in...Ch. 9 - Prob. 9FTDCh. 9 - Why dont we need to consider external forces...Ch. 9 - How is it possible to have a collision between...Ch. 9 - A pitched baseball moves no faster than the...Ch. 9 - Two identical satellites are going in opposite...Ch. 9 - Prob. 14ECh. 9 - Two particles of equal mass m are at the vertices...Ch. 9 - Rework Example 9.1 with the origin at the center...Ch. 9 - Three equal masses lie at the corners of an...Ch. 9 - Prob. 18ECh. 9 - A popcorn kernel at rest in a hot pan bursts into...Ch. 9 - A 60-kg skater, at rest on frictionless ice,...Ch. 9 - A plutonium-239 nucleus at rest decays into a...Ch. 9 - A toboggan of mass 8.6 kg is moving horizontally...Ch. 9 - A 150-g trick baseball is thrown at 60 km/h. It...Ch. 9 - An object with kinetic energy K explodes into two...Ch. 9 - Two 140-kg satellites collide at an altitude where...Ch. 9 - High-speed photos of a 220-g flea jumping...Ch. 9 - Youre working in mission control for an...Ch. 9 - In a railroad switchyard, a 56-ton freight car is...Ch. 9 - In a totally inelastic collision between two equal...Ch. 9 - Prob. 30ECh. 9 - Two identical trucks have mass 5500 kg when empty,...Ch. 9 - An alpha particle (4He) strikes a stationary gold...Ch. 9 - Playing in the street, a child accidentally tosses...Ch. 9 - A block of mass m undergoes a one-dimensional...Ch. 9 - A proton moving at 6.9 Mm/s collides elastically...Ch. 9 - A head-on, elastic collision between two particles...Ch. 9 - Find the center of mass of a pentagon with five...Ch. 9 - Wildlife biologists fire 20-g rubber bullets to...Ch. 9 - Consider a system of three equal-mass particles...Ch. 9 - Youre with 19 other people on a boat at rest in...Ch. 9 - A hemispherical bowl is at rest on a frictionless...Ch. 9 - Physicians perform needle biopsies to sample...Ch. 9 - Find the center of mass of the uniform, solid cone...Ch. 9 - A firecracker, initially at rest, explodes into...Ch. 9 - An 11,000-kg freight car rests against a spring...Ch. 9 - On an icy road, a 1200-kg car moving at 50 km/h...Ch. 9 - A 1250-kg car is moving with velocity...Ch. 9 - Masses m and 3m approach at the same speed v and...Ch. 9 - A 238U nucleus is moving in the x-direction at 5.0...Ch. 9 - A cylindrical concrete silo is 4.0 m in diameter...Ch. 9 - A 42-g firecracker is at rest at the origin when...Ch. 9 - A 60-kg astronaut floating in space simultaneously...Ch. 9 - Assuming equal-mass pieces in Exercise 24, find...Ch. 9 - A 62-kg sprinter stands on the left end of a...Ch. 9 - Youre a production engineer in a cookie factory,...Ch. 9 - Mass m, moving at speed 2v, approaches mass 4m,...Ch. 9 - Verify explicitly that kinetic energy is conserved...Ch. 9 - While standing on frictionless ice, you (mass 65.0...Ch. 9 - Youre an accident investigator at a scene where a...Ch. 9 - A fireworks rocket is launched vertically upward...Ch. 9 - Two objects moving in opposite directions with the...Ch. 9 - Explosive bolts separate a 950-kg communications...Ch. 9 - Youre working in quality control for a model...Ch. 9 - Youre investigating an accident in which a 1040-kg...Ch. 9 - A 400-mg popcorn kernel is skittering across a...Ch. 9 - Two identical objects with the same initial speed...Ch. 9 - A proton (mass 1 u) moving at 6.90 Mm/s collides...Ch. 9 - Two objects, one initially at rest, undergo a...Ch. 9 - Blocks B and C have masses 2m and m, respectively,...Ch. 9 - Derive Equation 9.15b.Ch. 9 - An object collides elastically with an equal-mass...Ch. 9 - A proton (mass 1 u) collides elastically with a...Ch. 9 - Two identical billiard balls are initially at rest...Ch. 9 - Find an expression for the impulse imparted by a...Ch. 9 - A 32-u oxygen molecule (O2) moving in the...Ch. 9 - A 114-g Frisbee is lodged on a tree branch 7.65 m...Ch. 9 - You set a small ball of mass m atop a large ball...Ch. 9 - A car moving at speed v undergoes a...Ch. 9 - A 200-g block is released from rest at a height of...Ch. 9 - A 14-kg projectile is launched at 380 m/s at a 55...Ch. 9 - During a crash test, a car moving at 50 km/h...Ch. 9 - Use numerical or graphical techniques to estimate...Ch. 9 - A block of mass m1 undergoes a one-dimensional...Ch. 9 - Two objects of unequal mass, one initially at...Ch. 9 - Prob. 86PCh. 9 - Find the center of mass of a uniform slice of...Ch. 9 - In a ballistic pendulum demonstration gone bad, a...Ch. 9 - An 80-kg astronaut has become detached from the...Ch. 9 - Prob. 90PCh. 9 - A thin rod extends from x = 0 to x = L. It carries...Ch. 9 - Model rocket motors are specified by giving the...Ch. 9 - A block of mass M is moving at speed r0 on a...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...Ch. 9 - Youre interested in the intersection of physics...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
In what way do the membranes of a eukaryotic cell vary? A. Phospholipids are found only in certain membranes. B...
Campbell Biology in Focus (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. When we see Saturn going through a per...
Cosmic Perspective Fundamentals
When Mendel did crosses of true-breeding purple- and white-flowered pea plants, the white-flowered trait disapp...
Campbell Biology (11th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Pendulum bob 1 has mass m1. It is displaced to height h1 and released. Pendulum bob 1 elastically collides with pendulum bob 2 of mass m2 (Fig. P11.43). FIGURE P11.43 a. Find an expression for the maximum height h2 of pendulum bob 2. b. If m2 = 2.5m1 and h1 = 5.46 m, what is h2?arrow_forwardA 5.00-g bullet moving with an initial speed of v = 400 m/s is fired into and passes through a 1.00-kg block as shown in Figure P8.57. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant 900 N/m. The block moves d = 5.00 cm to the right after impact before being brought to rest by the spring. Find (a) the speed at which the bullet emerges from the block and (b) the amount of initial kinetic energy of the bullet that is converted into internal energy in the bullet-block system during the collision. Figure P8.57arrow_forwardIn a laboratory experiment, an electron with a kinetic energy of 50.5 keV is shot toward another electron initially at rest (Fig. P11.50). (1 eV = 1.602 1019 J) The collision is elastic. The initially moving electron is deflected by the collision. a. Is it possible for the initially stationary electron to remain at rest after the collision? Explain. b. The initially moving electron is detected at an angle of 40.0 from its original path. What is the speed of each electron after the collision? FIGURE P11.50arrow_forward
- Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them (Fig. P8.7). A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of 2.00 m/s. (a) What is the velocity of the block of mass m? (b) Find the systems original elastic potential energy, taking m = 0.350 kg. (c) Is the original energy in the spring or in the cord? (d) Explain your answer to part (c). (e) Is the momentum of the system conserved in the bursting-apart process? Explain how that is possible considering (f) there are large forces acting and (g) there is no motion beforehand and plenty of motion afterward? Figure P8.7arrow_forwardA 2.0-g particle moving at 8.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in parts (a) and (b). In which case does the incident particle lose more kinetic energy?arrow_forwardA 5.00-g bullet moving with an initial speed of i = 400 m/s is fired into and passes through a 1.00-kg block as shown in Figure P9.89. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant 900 N/m. The block moves d = 5.00 cm to the right after impact before being brought to rest by the spring. Find (a) the speed at which the bullet emerges from the block and (b) the amount of initial kinetic energy of the bullet that is converted into internal energy in the bullet-block system during the collision.arrow_forward
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardTwo skateboarders, with masses m1 = 75.0 kg and m2 = 65.0 kg, simultaneously leave the opposite sides of a frictionless half-pipe at height h = 4.00 m as shown in Figure P11.49. Assume the skateboarders undergo a completely elastic head-on collision on the horizontal segment of the half-pipe. Treating the skateboarders as particles and assuming they dont fall off their skateboards, what is the height reached by each skateboarder after the collision? FIGURE P11.49arrow_forwardThree runaway train cars are moving on a frictionless, horizontal track in a railroad yard as shown in Figure P11.73. The first car, with mass m1 = 1.50 103 kg, is moving to the right with speed v1 = 10.0 m /s; the second car, with mass m2 = 2.50 103 kg, is moving to the left with speed v2 = 5.00 m/s, and the third car, with mass m3 = 1.20 103 kg, is moving to the left with speed v3 = 8.00 m /s. The three railroad cars collide at the same instant and couple, forming a train of three cars. a. What is the final velocity of the train cars immediately after the collision? b. Would the answer to part (a) change if the three cars did not collide at the same instant? Explain. FIGURE P11.73arrow_forward
- (a) Figure P9.36 shows three points in the operation of the ballistic pendulum discussed in Example 9.6 (and shown in Fig. 9.10b). The projectile approaches the pendulum in Figure P9.36a. Figure P9.36b shows the situation just after the projectile is captured in the pendulum. In Figure P9.36c, the pendulum arm has swung upward and come to rest momentarily at a height A above its initial position. Prove that the ratio of the kinetic energy of the projectilependulum system immediately after the collision to the kinetic energy immediately before is m1|/(m1 + m2). (b) What is the ratio of the momentum of the system immediately after the collision to the momentum immediately before? (c) A student believes that such a large decrease in mechanical energy must be accompanied by at least a small decrease in momentum. How would you convince this student of the truth? Figure P9.36 Problem. 36 and 43. (a) A metal ball moves toward the pendulum. (b) The ball is captured by the pendulum. (c) The ballpendulum combination swings up through a height h before coming to rest.arrow_forwardIn a laboratory experiment, 1 a block of mass M is placed on a frictionless table at the end of a relaxed spring of spring constant k. 2 The spring is compressed a distance x0 and 3 a small ball of mass m is launched into the block as shown in Figure P11.22. The ball and block stick together and are projected off the table of height h. Find an expression for the horizontal displacement of the ballblock system from the end of the table until it hits the floor in terms of the parameters given. FIGURE P11.22arrow_forwardBefore an elastic collision of two balls of 2.0 kg each, the kinetic energies of two balls are measured to be 14J and 28J. After the collision the first ball was moving at 2.5 m/s. What is the velocity of the second ball?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Elastic and Inelastic Collisions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=M2xnGcaaAi4;License: Standard YouTube License, CC-BY