
Review Question 9.1 Visualize an ice skater rotating faster and faster in a clockwise direction What are the signs of rotational velocity and rotational acceleration? As the skater starts slowing down, what are the signs of rotational velocity and acceleration?

To explain: The signs of rotational velocity and rotational acceleration when an ice skater starts rotating faster and faster in the clockwise direction. Also, explain the signs of rotational velocity and rotational acceleration when the skater starts slowing down.
Answer to Problem 1RQ
Solution:
When the ice skater is rotating faster and faster, the signs of rotational velocity and rotational acceleration are negative. However, when the ice skater is slowing down, the sign of rotational velocity remains negative whereas that of rotational acceleration becomes positive.
Explanation of Solution
Introduction:
Rotational velocity is the rate of change of the angular position of a body rotating about a center or any point within a given period of time. It is written as:
Here,
The rate of change of angular velocity is called rotational acceleration. It is written as:
Here,
When an object is rotating in the clockwise direction, the sign of rotational velocity is taken as negative, and vice versa. The sign of rotational acceleration is the same as that of rotational velocity when rotational velocity is increased, but opposite when rotational velocity is decreased.
Explanation:
When an ice skater is rotating faster and faster in the clockwise direction, it is clear that the rotational velocity is increasing with respect to time. The sign of rotational velocity depends on the direction of rotation of the object. If the object is rotating in a clockwise direction, the sign will be negative, and vice versa.
In the given problem, the ice skater is rotating in the clockwise direction; so, rotational velocity is negative. The sign of rotational acceleration is also negative because rotational velocity is increasing with respect to time and thus rotational acceleration will have same sign as that of rotational velocity.
The second case, when the ice skater is slowing down, but rotating in a clockwise direction, signifies that the sign of rotational velocity is negative but that of rotational acceleration is opposite to the sign of rotational velocity as velocity is decreasing with respect to time. So, the sign of angular acceleration, in this case, will be positive.
Conclusion:
Hence, it is clear that when the ice skater is rotating faster and faster, rotational velocity and rotational acceleration are negative as per the sign convention. On the other hand, when the ice skater is slowing down, the rotational velocity has a negative sign while rotational acceleration has a positive sign.
Want to see more full solutions like this?
Chapter 9 Solutions
College Physics
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Chemistry & Chemical Reactivity
Human Anatomy & Physiology (2nd Edition)
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Human Physiology: An Integrated Approach (8th Edition)
- no AI, pleasearrow_forwardSketch the resulting complex wave form, and then say whether it is a periodic or aperiodic wave.arrow_forwardDuring a concentric loading of the quadriceps muscle in the upper leg, an athlete extends his lower leg from a vertical position (see figure (a)) to a fully extended horizontal position (see figure (b)) at a constant angular speed of 45.0° per second. Two of the four quadriceps muscles, the vastis intermedius and the rectus femoris, terminate at the patellar tendon which is attached to the top of the tibia in the lower leg. The distance from the point of attachment of the patellar tendon to the rotation axis of the tibia relative to the femur is 4.10 cm in this athlete. a b (a) The two quadriceps muscles can exert a maximum force of 225 N through the patellar tendon. This force is applied at an angle of 25.0° to the section of the tibia between the attachment point and the rotation axis. What is the torque (in N⚫ m) exerted by the muscle on the lower leg during this motion? (Enter the magnitude.) N⚫ m (b) What is the power (in W) generated by the athlete during the motion? W (c)…arrow_forward
- = A hanging weight, with a mass of m₁ = 0.365 kg, is attached by a rope to a block with mass m₂ 0.835 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R₁ = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As the weight falls, the block slides on the table, and the coefficient of kinetic friction between the block and the table is μk = 0.250. At the instant shown, the block is moving with a velocity of v; = 0.820 m/s toward the pulley. Assume that the pulley is free to spin without friction, that the rope does not stretch and does not slip on the pulley, and that the mass of the rope is negligible. mq R₂ R₁ mi (a) Using energy methods, find the speed of the block (in m/s) after it has moved a distance of 0.700 m away from the initial position shown. m/s (b) What is the angular speed of the pulley (in rad/s) after the block has moved this…arrow_forwardno AI, pleasearrow_forwardno AI, pleasearrow_forward
- no AI, pleasearrow_forwardTwo astronauts, each having a mass of 95.5 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 4.60 m/s. Treating the astronauts as particles, calculate each of the following. CG × d (a) the magnitude of the angular momentum of the system kg m2/s (b) the rotational energy of the system KJ By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? kg m2/s (d) What are their new speeds? m/s (e) What is the new rotational energy of the system? KJ (f) How much work is done by the astronauts in shortening the rope? KJarrow_forwardA uniform horizontal disk of radius 5.50 m turns without friction at w = 2.55 rev/s on a vertical axis through its center, as in the figure below. A feedback mechanism senses the angular speed of the disk, and a drive motor at A ensures that the angular speed remain constant while a m = 1.20 kg block on top of the disk slides outward in a radial slot. The block starts at the center of the disk at time t = 0 and moves outward with constant speed v = 1.25 cm/s relative to the disk until it reaches the edge at t = 360 s. The sliding block experiences no friction. Its motion is constrained to have constant radial speed by a brake at B, producing tension in a light string tied to the block. (a) Find the torque as a function of time that the drive motor must provide while the block is sliding. Hint: The torque is given by t = 2mrvw. t N.m (b) Find the value of this torque at t = 360 s, just before the sliding block finishes its motion. N.m (c) Find the power which the drive motor must…arrow_forward
- (a) A planet is in an elliptical orbit around a distant star. At its closest approach, the planet is 0.670 AU from the star and has a speed of 54.0 km/s. When the planet is at its farthest distance from the star of 36.0 AU, what is its speed (in km/s)? (1 AU is the average distance from the Earth to the Sun and is equal to 1.496 × 1011 m. You may assume that other planets and smaller objects in the star system exert negligible forces on the planet.) km/s (b) What If? A comet is in a highly elliptical orbit around the same star. The comet's greatest distance from the star is 25,700 times larger than its closest distance to the star. The comet's speed at its greatest distance is 2.40 x 10-2 km/s. What is the speed (in km/s) of the comet at its closest approach? km/sarrow_forwardYou are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.505 kg and length = 2.70 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Velcro M Incoming Velcro-covered ball m The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.25 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forward56 is not the correct answer!arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





