Concept explainers
(a)
Interpretation:
The number of moles of water are needed to react with
Concept Introduction:
Mole ratio:
A mole ratio is a ratio between the numbers of moles of any two species involved in a
Example,
In the reaction,
(a)
Answer to Problem 12PE
The number of moles of water are needed to react with
Explanation of Solution
Given,
The mass of
The molecular weight of
The balanced reaction is,
In the mole ratio, the coefficients of the balanced equation are used. Therefore the mole ratio is
The number of moles can be calculated as,
The number of moles of water are needed to react with
(b)
Interpretation:
The number of moles of
Concept Introduction:
Refer to part (a).
(b)
Answer to Problem 12PE
The number of moles of
Explanation of Solution
The balanced reaction is,
In the mole ratio, the coefficients of the balanced equation are used. Therefore the mole ratio is
The number of moles can be calculated as,
The number of moles of
(c)
Interpretation:
The number of moles of
Concept Introduction:
Refer to part (a).
(c)
Answer to Problem 12PE
The number of moles of
Explanation of Solution
Given,
The mass of
The molecular weight of
The balanced reaction is,
In the mole ratio, the coefficients of the balanced equation are used. Therefore the mole ratio is
The number of moles can be calculated as,
The number of moles of
(d)
Interpretation:
The gram of water is required to produce
Concept Introduction:
Refer to part (a).
(d)
Answer to Problem 12PE
The gram of water is required to produce
Explanation of Solution
The balanced reaction is,
In the mole ratio, the coefficients of the balanced equation are used. Therefore the mole ratio is
The number of moles can be calculated as,
Conversion of moles to grams:
The molar mass of
The gram of water is required to produce
Want to see more full solutions like this?
Chapter 9 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- What is the molarity of a solution of sodium hydrogen sulfate that is prepared by dissolving 9.21 g NaHSO4 in enough water to form 2.00-L solution? What is the molarity of each ion in the solution?arrow_forward4.8 In an experiment carried out at very low pressure, 13x1015 molecules of H2 are reacted with acetylene, C2H2, to form ethane, C2H6, on the surface of a catalyst. Write a balanced chemical equation for this reaction. How many molecules of acetylene are consumed?arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward
- 4.24 Ammonia gas can be prepared by the reaction CaO(s)+2NH4Cl(s)2NH3(g)+H2O(g)+CaCl2(s) If 112 g of CaO reacts with 224 g of NH4Cl, how many moles of reactants and products are there when the reaction is complete?arrow_forwardNitric acid is produced commercially by the Ostwald process, represented by the following equations: 4NH3(g)+5O24NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) What mass of NH3 must be used to produce 1.0 106 kg HNO3 by the Ostwald process? Assume 100% yield in each reaction, and assume that the NO produced in the third step is not recycled.arrow_forwardWhat is the molarity of a solution of strontium chloride that is prepared by dissolving 4.11 g SrCl2 in enough water to form 1.00-L solution? What is the molarity of each ion in the solution?arrow_forward
- 4-61 In photosynthesis, green plants convert CO2 and H2O to glucose, C6H12O6. How many grams of CO2are required to produce 5.1 g of glucose?arrow_forwardWrite a balanced equation for the reaction of hydroiodic acid, HI, with calcium hydroxide, Ca(OH)2. Then, write the balanced complete ionic equation and the net ionic equation for this neutralization reaction.arrow_forwardYou are given a solid mixture of NaNO2 and NaCl and are asked to analyze it for the amount of NaNO2 present. To do so, you allow the mixture to react with sulfamic acid, HSO3NH2, in water according to the equation NaNO2(aq) + HSO3NH2(aq) NaHSO4(aq) + H2O() + N2(g) What is the weight percentage of NaNO2 in 1.232 g of the solid mixture if reaction with sulfa-mic acid produces 295 mL of dry N2 gas with a pressure of 713 mm Hg at 21.0 C?arrow_forward
- Write an equation from the following description: reactants are gaseous NH3 and O2, products are gaseous NO2 and liquid H2O, and the stoichiometric coefficients are 4, 7, 4, and 6, respectively.arrow_forwardOne of the ways to remove nitrogen monoxide gas, a serious source of air pollution, from smokestack emissions is by reaction with ammonia gas, NH3. The products of the reaction, N2 and H2O, are not toxic. Write the balanced equation for this reaction. Assign an oxidation number to each element in the reactants and products, and indicate which element is oxidized and which is reduced.arrow_forward4-93 Ammonia is prepared industrially by the reaction of nitrogen and hydrogen according to the following equation: If 29.7 kg of N2 is added to 3.31 kg of H2, (a) Which reactant is the limiting reagent? (b) How many grams of the other reactant are left over? (c) How many grams of NH3 are formed if the reaction goes to completion?arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning